Understanding the Recursion of mergesort - algorithm

Most of the mergesort implementations I see are similar to this. intro to algorithms book along with online implentations I search for. My recursion chops don't go much further than messing with Fibonacci generation (which was simple enough) so maybe it's the multiple recursions blowing my mind, but I can't even step through the code and understand whats going on even before I even hit the merge function.
How is it stepping through this? Is there some strategy or reading I should undergo to better understand the process here?
void mergesort(int *a, int*b, int low, int high)
{
int pivot;
if(low<high)
{
pivot=(low+high)/2;
mergesort(a,b,low,pivot);
mergesort(a,b,pivot+1,high);
merge(a,b,low,pivot,high);
}
}
and the merge(although frankly I'm mentally stuck before I even get to this part)
void merge(int *a, int *b, int low, int pivot, int high)
{
int h,i,j,k;
h=low;
i=low;
j=pivot+1;
while((h<=pivot)&&(j<=high))
{
if(a[h]<=a[j])
{
b[i]=a[h];
h++;
}
else
{
b[i]=a[j];
j++;
}
i++;
}
if(h>pivot)
{
for(k=j; k<=high; k++)
{
b[i]=a[k];
i++;
}
}
else
{
for(k=h; k<=pivot; k++)
{
b[i]=a[k];
i++;
}
}
for(k=low; k<=high; k++) a[k]=b[k];
}

MERGE SORT:
1) Split the array in half
2) Sort the left half
3) Sort the right half
4) Merge the two halves together

I think the "sort" function name in MergeSort is a bit of a misnomer, it should really be called "divide".
Here is a visualization of the algorithm in process.
Each time the function recurses, it's working on a smaller and smaller subdivision of the input array, starting with the left half of it. Each time the function returns from recursion, it will continue on and either start working on the right half, or recurse up again and work on a larger half.
Like this
[************************]mergesort
[************]mergesort(lo,mid)
[******]mergesort(lo,mid)
[***]mergesort(lo,mid)
[**]mergesort(lo,mid)
[**]mergesort(mid+1,hi)
[***]merge
[***]mergesort(mid+1,hi)
[**]mergesort*(lo,mid)
[**]mergesort(mid+1,hi)
[***]merge
[******]merge
[******]mergesort(mid+1,hi)
[***]mergesort(lo,mid)
[**]mergesort(lo,mid)
[**]mergesort(mid+1,hi)
[***]merge
[***]mergesort(mid+1,hi)
[**]mergesort(lo,mid)
[**]mergesort(mid+1,hi)
[***]merge
[******]merge
[************]merge
[************]mergesort(mid+1,hi)
[******]mergesort(lo,mid)
[***]mergesort(lo,mid)
[**]mergesort(lo,mid)
[**]mergesort(mid+1,hi)
[***]merge
[***]mergesort(mid+1,hi)
[**]mergesort(lo,mid)
[**]mergesort(mid+1,hi)
[***]merge
[******]merge
[******]mergesort(mid+1,hi)
[***]mergesort(lo,mid)
[**]mergesort*(lo,mid)
[**]mergesort(mid+1,hi)
[***]merge
[***]mergesort(mid+1,hi)
[**]mergesort(lo,mid)
[**]mergesort(mid+1,hi)
[***]merge
[******]merge
[************]merge
[************************]merge

An obvious thing to do would be to try this merge sort on a small array, say size 8 (power of 2 is convenient here), on paper. Pretend you are a computer executing the code, and see if it starts to become a bit clearer.
Your question is a bit ambiguous because you don't explain what you find confusing, but it sounds like you are trying to unroll the recursive calls in your head. Which may or may not be a good thing, but I think it can easily lead to having too much in your head at once. Instead of trying to trace the code from start to end, see if you can understand the concept abstractly. Merge sort:
Splits the array in half
Sorts the left half
Sorts the right half
Merges the two halves together
(1) should be fairly obvious and intuitive to you. For step (2) the key insight is this, the left half of an array... is an array. Assuming your merge sort works, it should be able to sort the left half of the array. Right? Step (4) is actually a pretty intuitive part of the algorithm. An example should make it trivial:
at the start
left: [1, 3, 5], right: [2, 4, 6, 7], out: []
after step 1
left: [3, 5], right: [2, 4, 6, 7], out: [1]
after step 2
left: [3, 5], right: [4, 6, 7], out: [1, 2]
after step 3
left: [5], right: [4, 6, 7], out: [1, 2, 3]
after step 4
left: [5], right: [6, 7], out: [1, 2, 3, 4]
after step 5
left: [], right: [6, 7], out: [1, 2, 3, 4, 5]
after step 6
left: [], right: [7], out: [1, 2, 3, 4, 5, 6]
at the end
left: [], right: [], out: [1, 2, 3, 4, 5, 6, 7]
So assuming that you understand (1) and (4), another way to think of merge sort would be this. Imagine someone else wrote mergesort() and you're confident that it works. Then you could use that implementation of mergesort() to write:
sort(myArray)
{
leftHalf = myArray.subArray(0, myArray.Length/2);
rightHalf = myArray.subArray(myArray.Length/2 + 1, myArray.Length - 1);
sortedLeftHalf = mergesort(leftHalf);
sortedRightHalf = mergesort(rightHalf);
sortedArray = merge(sortedLeftHalf, sortedRightHalf);
}
Note that sort doesn't use recursion. It just says "sort both halves and then merge them". If you understood the merge example above then hopefully you see intuitively that this sort function seems to do what it says... sort.
Now, if you look at it more carefully... sort() looks pretty much exactly like mergesort()! That's because it is mergesort() (except it doesn't have base cases because it's not recursive!).
But that's how I like thinking of recursive functions--assume that the function works when you call it. Treat it as a black box that does what you need it to. When you make that assumption, figuring out how to fill in that black box is often easy. For a given input, can you break it down into smaller inputs to feed to your black box? After you solve that, the only thing that's left is handling the base cases at the start of your function (which are the cases where you don't need to make any recursive calls. For example, mergesort([]) just returns an empty array; it doesn't make a recursive call to mergesort()).
Finally, this is a bit abstract, but a good way to understand recursion is actually to write mathematical proofs using induction. The same strategy used to write an proof by induction is used to write a recursive function:
Math proof:
Show the claim is true for the base cases
Assume it is true for inputs smaller than some n
Use that assumption to show that it is still true for an input of size n
Recursive function:
Handle the base cases
Assume that your recursive function works on inputs smaller than some n
Use that assumption to handle an input of size n

Concerning the recursion part of the merge sort, I've found this page to be very very helpful. You can follow the code as it's being executed. It shows you what gets executed first, and what follows next.
Tom

the mergesort() simply divides the array in two halves until the if condition fails that is low < high. As you are calling mergesort() twice : one with low to pivot and second with pivot+1 to high, this will divide the sub arrays even more further.
Lets take an example :
a[] = {9,7,2,5,6,3,4}
pivot = 0+6/2 (which will be 3)
=> first mergesort will recurse with array {9,7,2} : Left Array
=> second will pass the array {5,6,3,4} : Right Array
It will repeat until you have 1 element in each left as well as right array.
In the end you'll have something similar to this :
L : {9} {7} {2} R : {5} {6} {3} {4} (each L and R will have further sub L and R)
=> which on call to merge will become
L(L{7,9} R{2}) : R(L{5,6} R{3,4})
As you can see that each sub array are getting sorted in the merge function.
=> on next call to merge the next L and R sub arrays will get in order
L{2,7,9} : R{3,4,5,6}
Now both L and R sub array are sorted within
On last call to merge they'll be merged in order
Final Array would be sorted => {2,3,4,5,6,7,9}
See the merging steps in answer given by #roliu

My apologies if this has been answered this way. I acknowledge that this is just a sketch, rather than a deep explanation.
While it is not obvious to see how the actual code maps to the recursion, I was able to understand the recursion in a general sense this way.
Take a the example unsorted set {2,9,7,5} as input. The merge_sort algorithm is denoted by "ms" for brevity below. Then we can sketch the operation as:
step 1: ms( ms( ms(2),ms(9) ), ms( ms(7),ms(5) ) )
step 2: ms( ms({2},{9}), ms({7},{5}) )
step 3: ms( {2,9}, {5,7} )
step 4: {2,5,7,9}
It is important to note that merge_sort of a singlet (like {2}) is simply the singlet (ms(2) = {2}), so that at the deepest level of recursion we get our first answer. The remaining answers then tumble like dominoes as the interior recursions finish and are merged together.
Part of the genius of the algorithm is the way it builds the recursive formula of step 1 automatically through its construction. What helped me was the exercise of thinking how to turn step 1 above from a static formula to a general recursion.

Trying to work out each and every step of a recursion is often not an ideal approach, but for beginners, it definitely helps to understand the basic idea behind recursion, and also to get better at writing recursive functions.
Here's a C solution to Merge Sort :-
#include <stdio.h>
#include <stdlib.h>
void merge_sort(int *, unsigned);
void merge(int *, int *, int *, unsigned, unsigned);
int main(void)
{
unsigned size;
printf("Enter the no. of integers to be sorted: ");
scanf("%u", &size);
int * arr = (int *) malloc(size * sizeof(int));
if (arr == NULL)
exit(EXIT_FAILURE);
printf("Enter %u integers: ", size);
for (unsigned i = 0; i < size; i++)
scanf("%d", &arr[i]);
merge_sort(arr, size);
printf("\nSorted array: ");
for (unsigned i = 0; i < size; i++)
printf("%d ", arr[i]);
printf("\n");
free(arr);
return EXIT_SUCCESS;
}
void merge_sort(int * arr, unsigned size)
{
if (size > 1)
{
unsigned left_size = size / 2;
int * left = (int *) malloc(left_size * sizeof(int));
if (left == NULL)
exit(EXIT_FAILURE);
for (unsigned i = 0; i < left_size; i++)
left[i] = arr[i];
unsigned right_size = size - left_size;
int * right = (int *) malloc(right_size * sizeof(int));
if (right == NULL)
exit(EXIT_FAILURE);
for (unsigned i = 0; i < right_size; i++)
right[i] = arr[i + left_size];
merge_sort(left, left_size);
merge_sort(right, right_size);
merge(arr, left, right, left_size, right_size);
free(left);
free(right);
}
}
/*
This merge() function takes a target array (arr) and two sorted arrays (left and right),
all three of them allocated beforehand in some other function(s).
It then merges the two sorted arrays (left and right) into a single sorted array (arr).
It should be ensured that the size of arr is equal to the size of left plus the size of right.
*/
void merge(int * arr, int * left, int * right, unsigned left_size, unsigned right_size)
{
unsigned i = 0, j = 0, k = 0;
while ((i < left_size) && (j < right_size))
{
if (left[i] <= right[j])
arr[k++] = left[i++];
else
arr[k++] = right[j++];
}
while (i < left_size)
arr[k++] = left[i++];
while (j < right_size)
arr[k++] = right[j++];
}
Here's the step-by-step explanation of the recursion :-
Let arr be [1,4,0,3,7,9,8], having the address 0x0000.
In main(), merge_sort(arr, 7) is called, which is the same as merge_sort(0x0000, 7).
After all of the recursions are completed, arr (0x0000) becomes [0,1,3,4,7,8,9].
| | |
| | |
| | |
| | |
| | |
arr - 0x0000 - [1,4,0,3,7,9,8] | | |
size - 7 | | |
| | |
left = malloc() - 0x1000a (say) - [1,4,0] | | |
left_size - 3 | | |
| | |
right = malloc() - 0x1000b (say) - [3,7,9,8] | | |
right_size - 4 | | |
| | |
merge_sort(left, left_size) -------------------> | arr - 0x1000a - [1,4,0] | |
| size - 3 | |
| | |
| left = malloc() - 0x2000a (say) - [1] | |
| left_size = 1 | |
| | |
| right = malloc() - 0x2000b (say) - [4,0] | |
| right_size = 2 | |
| | |
| merge_sort(left, left_size) -------------------> | arr - 0x2000a - [1] |
| | size - 1 |
| left - 0x2000a - [1] <-------------------------- | (0x2000a has only 1 element) |
| | |
| | |
| merge_sort(right, right_size) -----------------> | arr - 0x2000b - [4,0] |
| | size - 2 |
| | |
| | left = malloc() - 0x3000a (say) - [4] |
| | left_size = 1 |
| | |
| | right = malloc() - 0x3000b (say) - [0] |
| | right_size = 1 |
| | |
| | merge_sort(left, left_size) -------------------> | arr - 0x3000a - [4]
| | | size - 1
| | left - 0x3000a - [4] <-------------------------- | (0x3000a has only 1 element)
| | |
| | |
| | merge_sort(right, right_size) -----------------> | arr - 0x3000b - [0]
| | | size - 1
| | right - 0x3000b - [0] <------------------------- | (0x3000b has only 1 element)
| | |
| | |
| | merge(arr, left, right, left_size, right_size) |
| | i.e. merge(0x2000b, 0x3000a, 0x3000b, 1, 1) |
| right - 0x2000b - [0,4] <----------------------- | (0x2000b is now sorted) |
| | |
| | free(left) (0x3000a is now freed) |
| | free(right) (0x3000b is now freed) |
| | |
| | |
| merge(arr, left, right, left_size, right_size) | |
| i.e. merge(0x1000a, 0x2000a, 0x2000b, 1, 2) | |
left - 0x1000a - [0,1,4] <---------------------- | (0x1000a is now sorted) | |
| | |
| free(left) (0x2000a is now freed) | |
| free(right) (0x2000b is now freed) | |
| | |
| | |
merge_sort(right, right_size) -----------------> | arr - 0x1000b - [3,7,9,8] | |
| size - 4 | |
| | |
| left = malloc() - 0x2000c (say) - [3,7] | |
| left_size = 2 | |
| | |
| right = malloc() - 0x2000d (say) - [9,8] | |
| right_size = 2 | |
| | |
| merge_sort(left, left_size) -------------------> | arr - 0x2000c - [3,7] |
| | size - 2 |
| | |
| | left = malloc() - 0x3000c (say) - [3] |
| | left_size = 1 |
| | |
| | right = malloc() - 0x3000d (say) - [7] |
| | right_size = 1 |
| | |
| | merge_sort(left, left_size) -------------------> | arr - 0x3000c - [3]
| left - [3,7] was already sorted, but | | size - 1
| that doesn't matter to this program. | left - 0x3000c - [3] <-------------------------- | (0x3000c has only 1 element)
| | |
| | |
| | merge_sort(right, right_size) -----------------> | arr - 0x3000d - [7]
| | | size - 1
| | right - 0x3000d - [7] <------------------------- | (0x3000d has only 1 element)
| | |
| | |
| | merge(arr, left, right, left_size, right_size) |
| | i.e. merge(0x2000c, 0x3000c, 0x3000d, 1, 1) |
| left - 0x2000c - [3,7] <------------------------ | (0x2000c is now sorted) |
| | |
| | free(left) (0x3000c is now freed) |
| | free(right) (0x3000d is now freed) |
| | |
| | |
| merge_sort(right, right_size) -----------------> | arr - 0x2000d - [9,8] |
| | size - 2 |
| | |
| | left = malloc() - 0x3000e (say) - [9] |
| | left_size = 1 |
| | |
| | right = malloc() - 0x3000f (say) - [8] |
| | right_size = 1 |
| | |
| | merge_sort(left, left_size) -------------------> | arr - 0x3000e - [9]
| | | size - 1
| | left - 0x3000e - [9] <-------------------------- | (0x3000e has only 1 element)
| | |
| | |
| | merge_sort(right, right_size) -----------------> | arr - 0x3000f - [8]
| | | size - 1
| | right - 0x3000f - [8] <------------------------- | (0x3000f has only 1 element)
| | |
| | |
| | merge(arr, left, right, left_size, right_size) |
| | i.e. merge(0x2000d, 0x3000e, 0x3000f, 1, 1) |
| right - 0x2000d - [8,9] <----------------------- | (0x2000d is now sorted) |
| | |
| | free(left) (0x3000e is now freed) |
| | free(right) (0x3000f is now freed) |
| | |
| | |
| merge(arr, left, right, left_size, right_size) | |
| i.e. merge(0x1000b, 0x2000c, 0x2000d, 2, 2) | |
right - 0x1000b - [3,7,8,9] <------------------- | (0x1000b is now sorted) | |
| | |
| free(left) (0x2000c is now freed) | |
| free(right) (0x2000d is now freed) | |
| | |
| | |
merge(arr, left, right, left_size, right_size) | | |
i.e. merge(0x0000, 0x1000a, 0x1000b, 3, 4) | | |
(0x0000 is now sorted) | | |
| | |
free(left) (0x1000a is now freed) | | |
free(right) (0x1000b is now freed) | | |
| | |
| | |
| | |

I know this is an old question but wanted to throw my thoughts of what helped me understand merge sort.
There are two big parts to merge sort
Splitting of the array into smaller chunks (dividing)
Merging the array together (conquering)
The role of the recurison is simply the dividing portion.
I think what confuses most people is that they think there is a lot of logic in the splitting and determining what to split, but most of the actual logic of sorting happens on the merge. The recursion is simply there to divide and do the first half and then the second half is really just looping, copying things over.
I see some answers that mention pivots but I would recommend not associating the word "pivot" with merge sort because that's an easy way to confuse merge sort with quicksort (which is heavily reliant on choosing a "pivot"). They are both "divide and conquer" algorithms. For merge sort the division always happens in the middle whereas for quicksort you can be clever with the division when choosing an optimal pivot.

process to divide the problem into subproblems
Given example will help you understand recursion. int A[]={number of element to be shorted.}, int p=0; (lover index). int r= A.length - 1;(Higher index).
class DivideConqure1 {
void devide(int A[], int p, int r) {
if (p < r) {
int q = (p + r) / 2; // divide problem into sub problems.
devide(A, p, q); //divide left problem into sub problems
devide(A, q + 1, r); //divide right problem into sub problems
merger(A, p, q, r); //merger the sub problem
}
}
void merger(int A[], int p, int q, int r) {
int L[] = new int[q - p + 1];
int R[] = new int[r - q + 0];
int a1 = 0;
int b1 = 0;
for (int i = p; i <= q; i++) { //store left sub problem in Left temp
L[a1] = A[i];
a1++;
}
for (int i = q + 1; i <= r; i++) { //store left sub problem in right temp
R[b1] = A[i];
b1++;
}
int a = 0;
int b = 0;
int c = 0;
for (int i = p; i < r; i++) {
if (a < L.length && b < R.length) {
c = i + 1;
if (L[a] <= R[b]) { //compare left element<= right element
A[i] = L[a];
a++;
} else {
A[i] = R[b];
b++;
}
}
}
if (a < L.length)
for (int i = a; i < L.length; i++) {
A[c] = L[i]; //store remaining element in Left temp into main problem
c++;
}
if (b < R.length)
for (int i = b; i < R.length; i++) {
A[c] = R[i]; //store remaining element in right temp into main problem
c++;
}
}

When you call the recursive method it does not execute the real function at the same time it's stack into stack memory. And when condition not satisfied then it's going to next line.
Consider that this is your array:
int a[] = {10,12,9,13,8,7,11,5};
So your method merge sort will work like below:
mergeSort(arr a, arr empty, 0 , 7);
mergeSort(arr a, arr empty, 0, 3);
mergeSort(arr a, arr empty,2,3);
mergeSort(arr a, arr empty, 0, 1);
after this `(low + high) / 2 == 0` so it will come out of first calling and going to next:
mergeSort(arr a, arr empty, 0+1,1);
for this also `(low + high) / 2 == 0` so it will come out of 2nd calling also and call:
merger(arr a, arr empty,0,0,1);
merger(arr a, arr empty,0,3,1);
.
.
So on
So all sorting values store in empty arr.
It might help to understand the how recursive function works

Related

Scheduling algorithm in linear complexity

Here's the problem:
We have n tasks to complete in n days. We can complete a single task per day. Each task has a start date and an end date. We can't start a task before the start date and it has to be completed before the end date. So, given a vector s for the start dates and e for the end dates give a vector d, if it exists, where d[i] is the date you do task i. For example:
s = {1, 0, 1, 2, 0}
e = {2, 4, 2, 3, 1}
+--------+------------+----------+
| Task # | Start Date | End Date |
+--------+------------+----------+
| 0 | 1 | 2 |
| 1 | 0 | 4 |
| 2 | 1 | 2 |
| 3 | 2 | 3 |
| 4 | 0 | 1 |
+--------+------------+----------+
We have as a possible solution:
d = {1, 4, 2, 3, 0}
+--------+----------------+
| Task # | Date Completed |
+--------+----------------+
| 0 | 1 |
| 1 | 4 |
| 2 | 2 |
| 3 | 3 |
| 4 | 0 |
+--------+----------------+
It is trivial to create an algorithm with O(n^2). It is not too bad either to create an algorithm with O(nlogn). There is supposedly an algorithm that gives a solution with O(n). What would that be?
When you can't use time, use space! You can represent the tasks open on any day using a bit vector. In O(n) create a "starting today" array. You can also represent the tasks ending soonest using another bit vector that can also be calculated in O(n). And then finally, in O(n) again scan each day, adding in any tasks starting that day, picking the lowest numbered task open that day giving priority to the ones ending soonest.
using System.IO;
using System;
using System.Math;
class Program
{
static void Main()
{
int n = 5;
var s = new int[]{1, 0, 1, 2, 0};
var e = new int[]{2, 4, 2, 3, 1};
var sd = new int[n];
var ed = new int[n];
for (int task = 0; task < n; task++)
{
sd[s[task]] += (1 << task); // Start for task i
ed[e[task]] += (1 << task); // End for task i
}
int bits = 0;
// Track the earliest ending task
var ends = new int[n];
for (int day = n-1; day >= 0; day--)
{
if (ed[day] != 0) // task(s) ending today
{
// replace any tasks that have later end dates
bits = ed[day];
}
ends[day] = bits;
bits = bits ^ sd[day]; // remove any starting
}
var d = new int[n];
bits = 0;
for (int day = 0; day < n; day++)
{
bits |= sd[day]; // add any starting
int lowestBit;
if ((ends[day] != 0) && ((bits & ends[day]) != 0))
{
// Have early ending tasks to deal with
// and have not dealt with it yet
int tb = bits & ends[day];
lowestBit = tb & (-tb);
if (lowestBit == 0) throw new Exception("Fail");
}
else
{
lowestBit = bits & (-bits);
}
int task = (int)Math.Log(lowestBit, 2);
d[task] = day;
bits = bits - lowestBit; // remove task
}
Console.WriteLine(string.Join(", ", d));
}
}
Result in this case is: 1, 4, 2, 3, 0 as expected.
Correct me if I'm wrong, but I believe that the name for such problems would be Interval Scheduling.
From your post, I assume that you are not looking for the Optimal Schedule and that you're simply looking to find any solution within O(n).
The problem here is that sorting will take O(nlogn) and computing will also take O(nlogn). You can try do it in one step:
Define V - a vector of 'time taken' for each task.
Define P - a vector of tasks which finish before a given task.
i.e if Task 2 finishes before Task 3, P[3] = 2.
Of course, as you can see the main computation is involved in finding P[j]. You always take the latest-ending non-overlapping task.
Thus, to find P[i]. Find a task which ends before the ith task. If more than one exists, pick the one which ends last.
Define M - a vector containing the resultant slots.
The algorithm:
WIS(n)
M[0] <- 0
for j <- 1 to n
do M[j] = max(wj + M[p(j)], M[j-1])
return M[n]
Sort by end date, start date. Then process data in sorted order only executing tasks that are after the start date.

Determine number of row spans given a start index and a length

I have a matrix start index of my data and the number of elements of my data
and I need to find the number of rows that the data span.
e.g. the matrix
0 5
-------------------
| | | | |x |x |
-------------------
|x |x |x |x |x |x |
-------------------
| | | | | | |
-------------------
| | | | | | |
-------------------
My data is marked with x. I know the start index 4, the length of the data 8.
And I need to determine the number of rows this data spans, 2 in this case. (just doing length/6 is off by one in many cases, surely there have to be a simple formula for this..)
If you only know offset (i.e. index of the starting column), size (i.e. how many data), cols (i.e. maximum number of colums), and you want to calculate how many rows your data will span, you can do
int get_spanned_rows(int offset, int size, int cols) {
int spanned_rows = (offset + size) / cols
if ( ( (offset + size ) % cols) != 0 )
spanned_rows++
return spanned_rows
}
where % is the modulus (or reminder) operator
int calc_rows(int start,int length){
int rows = 0;
int x= 0;
if (start != 0){
x = 6%start;
rows+=1;
}
if ((start+length) % 6 != 0){
x +=(start+length) % 6;
rows+=1;
}
rows+= (length - x)/6;
return rows;
}
calculates number of rows by dividing by 6 but after subtracting partially filled rows count
In case you only want the number of rows you can calculate
num_rows = (offset + size + cols - 1) / cols
which in this case is
num_rows = (4 + 8 + 6 - 1) / 6 = 17 / 6 = 2

Algorithm for finding record with most matching attributes

I'm looking for some algorithm that for a given record with n properties with n possible values each (int, string etc) searches a number of existing records and gives back the one that matches the most properties.
Example:
A = 1
B = 1
C = 1
D = f
A | B | C | D
----+-----+-----+----
1 | 1 | 9 | f <
2 | 3 | 1 | g
3 | 4 | 2 | h
2 | 5 | 8 | j
3 | 6 | 5 | h
The first row would be the one I'm looking for, as it has the most matching values. I think it doesn't need to calculate any closeness to the values, because then row 2 might be more matching.
Loop through each row, add one to the row score of a field matches (field one has a score of 2) and when that's done, you have a resultset of scores which you can sort.
The basic algorithm could look like (in java pseudo code):
int bestMatchIdx = -1;
int currMatches = 0;
int bestMatches = 0;
for ( int row = 0 ; row < numRows ; row++ ) {
currMatches = 0;
for ( int col = 0 ; col < numCols ; col++ ) {
if ( search[col].equals( rows[ row ][ cols] ))
currMatches++;
}
if ( currMatches > bestMatches ) {
bestMatchIdx = row;
bestMatches = currMatches;
}
}
This assumes that you have an equals function to compare, and the data stored in a 2D array. 'search' is the reference row to compare all other rows against it.

divide list in two parts that their sum closest to each other

This is a hard algorithms problem that :
Divide the list in 2 parts (sum) that their sum closest to (most) each other
list length is 1 <= n <= 100 and their(numbers) weights 1<=w<=250 given in the question.
For example : 23 65 134 32 95 123 34
1.sum = 256
2.sum = 250
1.list = 1 2 3 7
2.list = 4 5 6
I have an algorithm but it didn't work for all inputs.
init. lists list1 = [], list2 = []
Sort elements (given list) [23 32 34 65 95 123 134]
pop last one (max one)
insert to the list which differs less
Implementation :
list1 = [], list2 = []
select 134 insert list1. list1 = [134]
select 123 insert list2. because if you insert to the list1 the difference getting bigger 3. select 95 and insert list2 . because sum(list2) + 95 - sum(list1) is less.
and so on...
You can reformulate this as the knapsack problem.
You have a list of items with total weight M that should be fitted into a bin that can hold maximum weight M/2. The items packed in the bin should weigh as much as possible, but not more than the bin holds.
For the case where all weights are non-negative, this problem is only weakly NP-complete and has polynomial time solutions.
A description of dynamic programming solutions for this problem can be found on Wikipedia.
The problem is NPC, but there is a pseudo polynomial algorithm for it, this is a 2-Partition problem, you can follow the way of pseudo polynomial time algorithm for sub set sum problem to solve this. If the input size is related polynomially to input values, then this can be done in polynomial time.
In your case (weights < 250) it's polynomial (because weight <= 250 n => sums <= 250 n^2).
Let Sum = sum of weights, we have to create two dimensional array A, then construct A, Column by Column
A[i,j] = true if (j == weight[i] or j - weight[i] = weight[k] (k is in list)).
The creation of array with this algorithm takes O(n^2 * sum/2).
At last we should find most valuable column which has true value.
Here is an example:
items:{0,1,2,3}
weights:{4,7,2,8} => sum = 21 sum/2 = 10
items/weights 0| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
---------------------------------------------------------
|0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0
|1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0
|2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1
|3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1
So because a[10, 2] == true the partition is 10, 11
This is an algorithm I found here and edited a little bit to solve your problem:
bool partition( vector< int > C ) {
// compute the total sum
int n = C.size();
int N = 0;
for( int i = 0; i < n; i++ ) N += C[i];
// initialize the table
T[0] = true;
for( int i = 1; i <= N; i++ ) T[i] = false;
// process the numbers one by one
for( int i = 0; i < n; i++ )
for( int j = N - C[i]; j >= 0; j--)
if( T[j] ) T[j + C[i]] = true;
for(int i = N/2;i>=0;i--)
if (T[i])
return i;
return 0;
}
I just returned first T[i] which is true instead of returning T[N/2] (in max to min order).
Finding the path which gives this value is not hard.
This problem is at least as hard as the NP-complete problem subset sum. Your algorithm is a greedy algorithm. This type of algorithm is fast, and can generate an approximate solution quickly but it cannot find the exact solution to an NP-complete problem.
A brute force approach is probably the simplest way to solve your problem, although it is will be to slow if there are too many elements.
Try every possible way of partitioning the elements into two sets and calculate the absolute difference in the sums.
Choose the partition for which the absolute difference is minimal.
Generating all the partitions can be done by considering the binary representation of each integer from 0 to 2^n, where each binary digit determines whether the correspending element is in the left or right partition.
Trying to resolve the same problem I have faced into the following idea which seems too much a solution, but it works in a linear time. Could one provide an example which would show that it does not work or explain why it is not a solution?
arr = [20,10,15,6,1,17,3,9,10,2,19] # a list of numbers
g1 = []
g2 = []
for el in reversed(sorted(arr)):
if sum(g1) > sum(g2):
g2.append(el)
else:
g1.append(el)
print(f"{sum(g1)}: {g1}")
print(f"{sum(g2)}: {g2}")
Typescript code:
import * as _ from 'lodash'
function partitionArray(numbers: number[]): {
arr1: number[]
arr2: number[]
difference: number
} {
let sortedArr: number[] = _.chain(numbers).without(0).sortBy((x) => x).value().reverse()
let arr1: number[] = []
let arr2: number[] = []
let median = _.sum(sortedArr) / 2
let sum = 0
_.each(sortedArr, (n) => {
let ns = sum + n
if (ns > median) {
arr1.push(n)
} else {
sum += n
arr2.push(n)
}
})
return {
arr1: arr1,
arr2: arr2,
difference: Math.abs(_.sum(arr1) - _.sum(arr2))
}
}

Quickest way to determine range overlap in Perl

I have two sets of ranges. Each range is a pair of integers (start and end) representing some sub-range of a single larger range. The two sets of ranges are in a structure similar to this (of course the ...s would be replaced with actual numbers).
$a_ranges =
{
a_1 =>
{
start => ...,
end => ...,
},
a_2 =>
{
start => ...,
end => ...,
},
a_3 =>
{
start => ...,
end => ...,
},
# and so on
};
$b_ranges =
{
b_1 =>
{
start => ...,
end => ...,
},
b_2 =>
{
start => ...,
end => ...,
},
b_3 =>
{
start => ...,
end => ...,
},
# and so on
};
I need to determine which ranges from set A overlap with which ranges from set B. Given two ranges, it's easy to determine whether they overlap. I've simply been using a double loop to do this--loop through all elements in set A in the outer loop, loop through all elements of set B in the inner loop, and keep track of which ones overlap.
I'm having two problems with this approach. First is that the overlap space is extremely sparse--even if there are thousands of ranges in each set, I expect each range from set A to overlap with maybe 1 or 2 ranges from set B. My approach enumerates every single possibility, which is overkill. This leads to my second problem--the fact that it scales very poorly. The code finishes very quickly (sub-minute) when there are hundreds of ranges in each set, but takes a very long time (+/- 30 minutes) when there are thousands of ranges in each set.
Is there a better way I can index these ranges so that I'm not doing so many unnecessary checks for overlap?
Update: The output I'm looking for is two hashes (one for each set of ranges) where the keys are range IDs and the values are the IDs of the ranges from the other set that overlap with the given range in this set.
This sounds like the perfect use case for an interval tree, which is a data structure specifically designed to support this operation. If you have two sets of intervals of sizes m and n, then you can build one of them into an interval tree in time O(m lg m) and then do n intersection queries in time O(n lg m + k), where k is the total number of intersections you find. This gives a net runtime of O((m + n) lg m + k). Remember that in the worst case k = O(nm), so this isn't any better than what you have, but for cases where the number of intersections is sparse this can be substantially better than the O(mn) runtime you have right now.
I don't have much experience working with interval trees (and zero experience in Perl, sorry!), but from the description it seems like they shouldn't be that hard to build. I'd be pretty surprised if one didn't exist already.
Hope this helps!
In case you are not exclusively tied to perl; The IRanges package in R deals with interval arithmetic. It has very powerful primitives, it would probably be easy to code a solution with them.
A second remark is that the problem could possibly become very easy if the intervals have additional structure; for example, if within each set of ranges there is no overlap (in that case a linear approach sifting through the two ordered sets simultaneously is possible). Even in the absence of such structure, the least you can do is to sort one set of ranges by start point, and the other set by end point, then break out of the inner loop once a match is no longer possible. Of course, existing and general algorithms and data structures such as the interval tree mentioned earlier are the most powerful.
There are Several existing CPAN modules that solve this issue, I have developed 2 of them: Data::Range::Compare and Data::Range::Compare::Stream
Data::Range::Compare only works with arrays in memory, but supports generic range types.
Data::Range::Compare::Stream Works with streams of data via iterators, but it requires understanding OO Perl to extend to generic data types. Data::Range::Compare::Stream is recommended if you are processing very very large sets of data.
Here is an Excerpt form the Examples folder of Data::Range::Compare::Stream.
Given these 3 sets of data:
Numeric Range set: A contained in file: source_a.src
+----------+
| 1 - 11 |
| 13 - 44 |
| 17 - 23 |
| 55 - 66 |
+----------+
Numeric Range set: B contained in file: source_b.src
+----------+
| 0 - 1 |
| 2 - 29 |
| 88 - 133 |
+----------+
Numeric Range set: C contained in file: source_c.src
+-----------+
| 17 - 29 |
| 220 - 240 |
| 241 - 250 |
+-----------+
The expected output would be:
+--------------------------------------------------------------------+
| Common Range | Numeric Range A | Numeric Range B | Numeric Range C |
+--------------------------------------------------------------------+
| 0 - 0 | No Data | 0 - 1 | No Data |
| 1 - 1 | 1 - 11 | 0 - 1 | No Data |
| 2 - 11 | 1 - 11 | 2 - 29 | No Data |
| 12 - 12 | No Data | 2 - 29 | No Data |
| 13 - 16 | 13 - 44 | 2 - 29 | No Data |
| 17 - 29 | 13 - 44 | 2 - 29 | 17 - 29 |
| 30 - 44 | 13 - 44 | No Data | No Data |
| 55 - 66 | 55 - 66 | No Data | No Data |
| 88 - 133 | No Data | 88 - 133 | No Data |
| 220 - 240 | No Data | No Data | 220 - 240 |
| 241 - 250 | No Data | No Data | 241 - 250 |
+--------------------------------------------------------------------+
The Source code can be found here.
#!/usr/bin/perl
use strict;
use warnings;
use Data::Dumper;
use lib qw(./ ../lib);
# custom package from FILE_EXAMPLE.pl
use Data::Range::Compare::Stream::Iterator::File;
use Data::Range::Compare::Stream;
use Data::Range::Compare::Stream::Iterator::Consolidate;
use Data::Range::Compare::Stream::Iterator::Compare::Asc;
my $source_a=Data::Range::Compare::Stream::Iterator::File->new(filename=>'source_a.src');
my $source_b=Data::Range::Compare::Stream::Iterator::File->new(filename=>'source_b.src');
my $source_c=Data::Range::Compare::Stream::Iterator::File->new(filename=>'source_c.src');
my $consolidator_a=new Data::Range::Compare::Stream::Iterator::Consolidate($source_a);
my $consolidator_b=new Data::Range::Compare::Stream::Iterator::Consolidate($source_b);
my $consolidator_c=new Data::Range::Compare::Stream::Iterator::Consolidate($source_c);
my $compare=new Data::Range::Compare::Stream::Iterator::Compare::Asc();
my $src_id_a=$compare->add_consolidator($consolidator_a);
my $src_id_b=$compare->add_consolidator($consolidator_b);
my $src_id_c=$compare->add_consolidator($consolidator_c);
print " +--------------------------------------------------------------------+
| Common Range | Numeric Range A | Numeric Range B | Numeric Range C |
+--------------------------------------------------------------------+\n";
my $format=' | %-12s | %-13s | %-13s | %-13s |'."\n";
while($compare->has_next) {
my $result=$compare->get_next;
my $string=$result->to_string;
my #data=($result->get_common);
next if $result->is_empty;
for(0 .. 2) {
my $column=$result->get_column_by_id($_);
unless(defined($column)) {
$column="No Data";
} else {
$column=$column->get_common->to_string;
}
push #data,$column;
}
printf $format,#data;
}
print " +--------------------------------------------------------------------+\n";
Try Tree::RB but to find mutually exclusive ranges, no overlaps
The performance is not bad, if I had about 10000 segments and had to find the segment for each discrete number. My input had 300 million records. I neaded to put them into separate buckets. Like partitioning the data. Tree::RB worked out great.
$var = [
[0,90],
[91,2930],
[2950,8293]
.
.
.
]
my lookup value were 10, 99, 991 ...
and basically I needed the position of the range for the given number
With this below comparison function, mine uses something like this:
my $cmp = sub
{
my ($a1, $b1) = #_;
if(ref($b1) && ref($a1))
{
return ($$a1[1]) <=> ($$b1[0]);
}
my $ret = 0;
if(ref($a1) eq 'ARRAY')
{
#
if($$a1[0] <= $b1 && $b1 >= $$a1[1])
{
$ret = 0;
}
if($$a1[0] < $b1)
{
$ret = -1;
}
if($$a1[1] > $b1)
{
$ret = 1;
}
}
else
{
if($$b1[0] <= $a1 && $a1 >= $$b1[1])
{
$ret = 0;
}
if($$b1[0] > $a1)
{
$ret = -1;
}
if($$b1[1] < $a1)
{
$ret = 1;
}
}
return $ret;
}
I should check time in order to know if its the fastest way, but according to the structure of your data you should try this:
use strict;
my $fromA = 12;
my $toA = 15;
my $fromB = 7;
my $toB = 35;
my #common_range = get_common_range($fromA, $toA, $fromB, $toB);
my $common_range = $common_range[0]."-".$common_range[-1];
sub get_common_range {
my #A = $_[0]..$_[1];
my %B = map {$_ => 1} $_[2]..$_[3];
my #common = ();
foreach my $i (#A) {
if (defined $B{$i}) {
push (#common, $i);
}
}
return sort {$a <=> $b} #common;
}

Resources