I was just wondering if there is a special way of saying when something equals something. For example in python, if you declare something equals 2, you say something = 2, whereas when you check if something equals something else, you would say:
if something == somethingelse:
So my question is in pseudocode for algorithms if I'm checking to see if a entered password equals a stored password in an IF THEN ELSE ENDIF loop, would I use one or two equal signs:
WHILE attempts < 3
Get EnteredPassword
**IF EnteredPassword = StoredPassword THEN**
Validated = TRUE
ELSE
attempts = attempts + 1
ENDIF
ENDWHILE
Usually, pseudocode is very broad and every author has their own way of expressing it. As
Aziz has noted, usually x <- 1 is used for an assignment and x := x + 1 for an update. Read ':=' as 'becomes' instead of 'equals', however, they are interchangeably used. As for your question, both = and == are accepted answers, as long as it is clear to your reader what your intention is.
To express equals you use the equal mark symbol once, unlike in python where you use the symbol twice to compare two values (eg if variable == 'one'). An example syntax is:
variable = 'one'
WHILE variable = 'one' DO
SEND "hi" TO DISPLAY
I am looking for a concise way to deal with the following situation: Given a variable (in practince, an instance variable in a class, though I don't think this matters here), which is known to be either nil or hold some Integer. If it is an Integer, the variable should be incremented. If it is nil, it should be initialized with 1.
These are obvious solutions to this, taking #counter as the variable to deal with:
# Separate the cases into two statements
#counter ||= 0
#counter += 1
or
# Separate the cases into one conditional
#counter = #counter ? (#counter + 1) : 1
I don't like these solutions because they require to repeat the name of the variable. The following attempt failed:
# Does not work
(#counter ||= 0) += 1
This can't be done, because the result of the assignment operators is not an lvalue, though the actual error message is a bit obscure. In this case, you get the error _unexpected tOP_ASGN, expecting end_.
Is there a good idiom to code my problem, or do I have to stick with one of my clumsy solutions?
The question is clear:
A variable is known to hold nil or an integer. If nil the variable is to be set equal to 1, else it is to be set equal to its value plus 1.
What is the best way to implement this in Ruby?
First, two points.
The question states, "If it is nil, it should be initialized with 1.". This contradicts the statement that the variable is known to be nil or an integer, meaning that it has already been initialized, or more accurately, defined. In the case of an instance variable, this distinction is irrelevant as Ruby initializes undefined instance variables to nil when they are referenced as rvalues. It's an important distinction for local variables, however, as an exception is raised when an undefined local variable is referenced as an rvalue.
The comments largely address situations where the variable holds an object other than nil or an integer. They are therefore irrelevant. If the OP wishes to broaden the question to allow the variable to hold objects other than nil or an integer (an array or hash, for example), a separate question should be asked.
What criteria should be used in deciding what code is best? Of the various possibilities that have been mentioned, I do not see important differences in efficiency. Assuming that to be the case, or that relative efficiency is not important in the application, we are left with readability (and by extension, maintainability) as the sole criterion. If x equals nil or an integer, or is an undefined instance variable, perhaps the clearest code is the following:
x = 0 if x.nil?
x += 1
or
x = x.nil? ? 1 : x+1
Ever-so-slightly less readable:
x = (x || 0) + 1
and one step behind that:
x = x.to_i + 1
which requires the reader to know that nil.to_i #=> 0.
The OP may regard these solutions as "clumsy", but I think they are all beautiful.
Can an expression be written that references x but once? I can't think of a way and one has not been suggested in the comments, so if there is a way (doubtful, I believe) it probably would not meet the test for readability.
Consider now the case where the local variable x may not have been defined. In that case we might write:
x = (defined?(x) ? (x || 0) : 0) + 1
defined? is a Ruby keyword.
I've read a number of articles on the difference between assignment and binding, but it hasn't clicked yet (specifically in the context of an imperative language vs one without mutation).
I asked in IRC, and someone mentioned these 2 examples illustrate the difference, but then I had to go and I didn't see the full explanation.
Can someone please explain how/why this works in a detailed way, to help illustrate the difference?
Ruby
x = 1; f = lambda { x }; x = 2; f.call
#=> 2
Elixir
x = 1; f = fn -> x end; x = 2; f.()
#=> 1
I've heard this explanation before and it seems pretty good:
You can think of binding as a label on a suitcase, and assignment as a
suitcase.
In other languages, where you have assignment, it is more like putting a value in a suitcase. You actually change value that is in the suitcase and put in a different value.
If you have a suitcase with a value in it, in Elixir, you put a label on it. You can change the label, but the value in the suitcase is still the same.
So, for example with:
iex(1)> x = 1
iex(2)> f = fn -> x end
iex(3)> x = 2
iex(4)> f.()
1
You have a suitcase with 1 in it and you label it x.
Then you say, "Here, Mr. Function, I want you to tell me what is in this suitcase when I call you."
Then, you take the label off of the suitcase with 1 in it and put it on another suitcase with 2 in it.
Then you say "Hey, Mr. Function, what is in that suitcase?"
He will say "1", because the suitcase hasn't changed. Although, you have taken your label off of it and put it on a different suitcase.
After a while, I came up with the answer that is probably the best explanation of the difference between “binding” and “assignment”; it has nothing in common with what I have written in another answer, hence it’s posted as a separate answer.
In any functional language, where everything is immutable, there is no meaningful difference between terms “binding” and “assignment.” One might call it either way; the common pattern is to use the word “binding,“ explicitly denoting that it’s a value bound to a variable. In Erlang, for instance, one can not rebound a variable. In Elixir this is possible (why, for God’s sake, José, what for?)
Consider the following example in Elixir:
iex> x = 1
iex> 1 = x
The above is perfectly valid Elixir code. It is evident, one cannot assign anything to one. It is neither assignment nor binding. It is matching. That is how = is treated in Elixir (and in Erlang): a = b fails if both are bound to different values; it returns RHO if they match; it binds LHO to RHO if LHO is not bound yet.
In Ruby it differs. There is a significant difference between assignment (copying the content,) and binding (making a reference.)
Elixir vs Ruby might not be the best contrast for this. In Elixir, we can readily "re-assign" the value of a previously assigned named variable. The two anonymous-function examples you provided demonstrate the difference in how the two languages assign local variables in them. In Ruby, the variable, meaning the memory reference, is assigned, which is why when we change it, the anonymous function returns the current value stored in that memory-reference. While in Elixir, the value of the variable at the time the anonymous function is defined (rather than the memory reference) is copied and stored as the local variable.
In Erlang, Elixir's "parent" language, however, variables as a rule are "bound." Once you've declared the value for the variable named X, you are not allowed to alter it for the remainder of the program and any needed alterations would need to be stored in new named variables. (There is a way to reassign a named variable in Erlang but it is not the custom.)
Binding refers to particular concept used in expression-based languages that may seem foreign if you're used to statement-based languages. I'll use an ML-style example to demonstrate:
let x = 3 in
let y = 5 in
x + y
val it : int = 8
The let... in syntax used here demonstrates that the binding let x = 3 is scoped only to the expression following the in. Likewise, the binding let y = 5 is only scoped to the expression x + y, such that, if we consider another example:
let x = 3 in
let f () =
x + 5
let x = 4 in
f()
val it : int = 8
The result is still 8, even though we have the binding let x = 4 above the call to f(). This is because f itself was bound in the scope of the binding let x = 3.
Assignment in statement-based languages is different, because the variables being assigned are not scoped to a particular expression, they are effectively 'global' for whatever block of code they're in, so reassigning the value of a variable changes the result of an evaluation that uses the same variable.
The easiest way to understand the difference, would be to compare the AST that is used by the language interpreter/compiler to produce machine-/byte-code.
Let’s start with ruby. Ruby does not provide the AST viewer out of the box, so I will use RubyParser gem for that:
> require 'ruby_parser'
> RubyParser.new.parse("x = 1; f = -> {x}; x = 2; f.()").inspect
#=> "s(:block, s(:lasgn, :x, s(:lit, 1)),
# s(:lasgn, :f, s(:iter, s(:call, nil, :lambda), 0, s(:lvar, :x))),
# s(:lasgn, :x, s(:lit, 2)), s(:call, s(:lvar, :f), :call))"
The thing we are looking for is the latest node in the second line: there is x variable inside the proc. In other words, ruby expects the bound variable there, named x. At the time the proc is evaluated, x has a value of 2. Hence the the proc returns 2.
Let’s now check Elixir.
iex|1 ▶ quote do
...|1 ▶ x = 1
...|1 ▶ f = fn -> x end
...|1 ▶ x = 2
...|1 ▶ f.()
...|1 ▶ end
#⇒ {:__block__, [],
# [
# {:=, [], [{:x, [], Elixir}, 1]},
# {:=, [], [{:f, [], Elixir}, {:fn, [], [{:->, [], [[], {:x, [], Elixir}]}]}]},
# {:=, [], [{:x, [], Elixir}, 2]},
# {{:., [], [{:f, [], Elixir}]}, [], []}
# ]}
Last node in the second line is ours. It still contains x, but during a compilation stage this x will be evaluated to it’s currently assigned value. That said, fn -> not_x end will result in compilation error, while in ruby there could be literally anything inside a proc body, since it’ll be evaluated when called.
In other words, Ruby uses a current caller’s context to evaluate proc, while Elixir uses a closure. It grabs the context it encountered the function definition and uses it to resolve all the local variables.
def success?
return #fhosts.empty? and #khosts.empty? and #shosts.any?
end
When I run that instance method, I get an error:
/home/fandingo/code/management/lib/ht.rb:37: void value expression
return #fhosts.empty? and #khosts.empty? and #shosts.any?
I'm confused by what's happening since this works
def success?
#fhosts.empty? and #khosts.empty? and #shosts.any?
# This also works
# r = #fhosts.empty? and #khosts.empty? and #shosts.any?
# return r
end
I'm coming from a Python background, and I don't want anything to do with implicit returns. Programming has plenty of landmines as it is.
If we have an arbitrary expression, E, that consists of boolean operations and and or together, here are some operations we could perform:
if E -- works
E -- works
* v = E -- works
return E -- broken
Why doesn't the last case work?
Edit: Actually v = E doesn't work. Only
v = Ei
is evaluated. Ei+1...k are ignored.
This is likely due to the very weak binding of and which causes it to parse out differently than you expect:
return x and y
This actually means:
(return x) and y
Since you're returning immediately it doesn't have a chance to evaluate the remainder of the expression.
Your version without return is correct:
x and y
This doesn't have a binding issue and is more idiomatic Ruby. Remember you only need to put an explicit return if you're trying to force an exit before the last line of the method. Being opposed to implicit returns is going to make your code look heavily non-Ruby. They're one of the reasons Ruby is so clean and simple, and how things like a.map { |v| v * 2 } works.
The When in Rome principle applies here. If you want to write Python-style Ruby you're going to be going against the grain. It's like saying "I don't like how you say X in your spoken language, so I'll just ignore that and do it my way."
This should also work:
return x && y
The && method is very strongly bound so return is the last thing evaluated here.
Or if you really want to use and for whatever reason:
return (x and y)
In my code I have a hash, each one with a set value of 0, after running through the code, I would like it to display "1", but it only displays a 0. Can anyone help, and please explain my error and why it didn't work.
puts "Hello!, and welcome to the 'Coin Calculator V1.0', please enter a value."
coin_value = gets.to_i
coin_num = {"quarters" => 0,"dimes" => 0,"nickels" => 0,"pennies" => 0}
if coin_value>25
coin_value-25
coin_num["quarters"]+1 // **basically, how do I add an integer value to the old integer?
puts coin_num["quarters"]
end
coin_num["quarters"] = coin_num["quarters"] + 1
which can be shortened using the += operator (addition assignment):
coin_num["quarters"] += 1
Neither of your arithmetic expressions changes anything.
coin_value - 25
That evaluates to 25 less than coin_value; if you printed it out or assigned it somewhere, you would see that. But since you don't do anything with the value, it just gets thrown away and nothing happens. Certainly, coin_value doesn't change.
Similarly,
coin_num["quarters"] + 1
evaluates to one more than the current value of coin_num["quarters"], but doesn't change anything.
If you want to change the value of a variable - any variable, whether a simple scalar like coin_value or an element of a Hash or Array - you have to use an assignment statement. You need an =, and the variable you want to change has to be on the left hand side of that =:
coin_value = coin_value - 25
coin_num['quarters'] = coin_num['quarters'] + 1
Ruby does define shorthand operators for modifying a variable using a simple expression involving that same variable's previous value:
coin_value -= 25
coin_num['quarters'] += 1
But you're still using = - it's just part of a compound assignment operator now.