I am using hadoop-1.2.1 and trying to run a simple RowCount HBase job using ToolRunner. However, no matter what I seem to try, hadoop cannot find the map class. The jar file is being copied correctly into hdfs, but I can't seem to figure out where it is going wrong. Please help!
Here is the code:
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.filter.FirstKeyOnlyFilter;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.output.NullOutputFormat;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class HBaseRowCountToolRunnerTest extends Configured implements Tool
{
// What to copy.
public static final String JAR_NAME = "myJar.jar";
public static final String LOCAL_JAR = <path_to_jar> + JAR_NAME;
public static final String REMOTE_JAR = "/tmp/"+JAR_NAME;
public static void main(String[] args) throws Exception
{
Configuration config = HBaseConfiguration.create();
//All connection configs set here -- omitted to post the code
config.set("tmpjars", REMOTE_JAR);
FileSystem dfs = FileSystem.get(config);
System.out.println("pathString = " + (new Path(LOCAL_JAR)).toString() + " \n");
// Copy jar file to remote.
dfs.copyFromLocalFile(new Path(LOCAL_JAR), new Path(REMOTE_JAR));
// Get rid of jar file when we're done.
dfs.deleteOnExit(new Path(REMOTE_JAR));
// Run the job.
System.exit(ToolRunner.run(config, new HBaseRowCountToolRunnerTest(), args));
}
#Override
public int run(String[] args) throws Exception
{
Job job = new RowCountJob(getConf(), "testJob", "myLittleHBaseTable");
return job.waitForCompletion(true) ? 0 : 1;
}
public static class RowCountJob extends Job
{
RowCountJob(Configuration conf, String jobName, String tableName) throws IOException
{
super(conf, RowCountJob.class.getCanonicalName() + "_" + jobName);
setJarByClass(getClass());
Scan scan = new Scan();
scan.setCacheBlocks(false);
scan.setFilter(new FirstKeyOnlyFilter());
setOutputFormatClass(NullOutputFormat.class);
TableMapReduceUtil.initTableMapperJob(tableName, scan,
RowCounterMapper.class, ImmutableBytesWritable.class, Result.class, this);
setNumReduceTasks(0);
}
}//end public static class RowCountJob extends Job
//Mapper that runs the count
//TableMapper -- TableMapper<KEYOUT, VALUEOUT> (*OUT by type)
public static class RowCounterMapper extends TableMapper<ImmutableBytesWritable, Result>
{
//Counter enumeration to count the actual rows
public static enum Counters {ROWS}
/**
* Maps the data.
*
* #param row The current table row key.
* #param values The columns.
* #param context The current context.
* #throws IOException When something is broken with the data.
* #see org.apache.hadoop.mapreduce.Mapper#map(KEYIN, VALUEIN,
* org.apache.hadoop.mapreduce.Mapper.Context)
*/
#Override
public void map(ImmutableBytesWritable row, Result values, Context context) throws IOException
{
// Count every row containing data times 2, whether it's in qualifiers or values
context.getCounter(Counters.ROWS).increment(2);
}
}//end public static class RowCounterMapper extends TableMapper<ImmutableBytesWritable, Result>
}//end public static void main(String[] args) throws Exception
Ok- I found a workaround to the problem and thought that I would share for all others having similar issues...
As is turns out, I abandoned the tmpjars configuration option and just copied the jar file directed into the DistributedCache from the code itself. Here is what it looks like:
// Copy jar file to remote.
FileSystem dfs = FileSystem.get(conf);
dfs.copyFromLocalFile(new Path(LOCAL_JAR), new Path(REMOTE_JAR));
// Get rid of jar file when we're done.
dfs.deleteOnExit(new Path(REMOTE_JAR));
//Place it in the distributed cache
DistributedCache.addFileToClassPath(new Path(REMOTE_JAR), conf, dfs);
Perhaps it doesn't solve what is going on with tmpjars, but it does work.
I got the same problem today.Finally, I found it was because I forgot to insert the following sentence in the driver class...
job.setJarByClass(HBaseTestDriver.class);
Related
Is there a way to create a hive table where the location for that hive table will be a http JSON REST API? I don't want to import the data every time in HDFS.
I had encountered similar situation in a project couple of years ago. This is the sort of low-key way of ingesting data from Restful to HDFS and then you use Hive analytics to implement the business logic.I hope you are familiar with core Java, Map Reduce (if not you might look into Hortonworks Data Flow, HDF which is a product of Hortonworks).
Step 1: Your data ingestion workflow should not be tied to your Hive workflow that contains business logic. This should be executed independently in timely manner based on your requirement (volume & velocity of data flow) and monitored regularly. I am writing this code on a text editor. WARN: It's not compiled or tested!!
The code below is using a Mapper which would take in the url or tweak it to accept the list of urls from the FS. The payload or requested data is stored as text file in the specified job output directory (forget the structure of data this time).
Mapper Class:
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.URL;
import java.net.URLConnection;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class HadoopHttpClientMap extends Mapper<LongWritable, Text, Text, Text> {
private int file = 0;
private String jobOutDir;
private String taskId;
#Override
protected void setup(Context context) throws IOException,InterruptedException {
super.setup(context);
jobOutDir = context.getOutputValueClass().getName();
taskId = context.getJobID().toString();
}
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException{
Path httpDest = new Path(jobOutDir, taskId + "_http_" + (file++));
InputStream is = null;
OutputStream os = null;
URLConnection connection;
try {
connection = new URL(value.toString()).openConnection();
//implement connection timeout logics
//authenticate.. etc
is = connection.getInputStream();
os = FileSystem.getLocal(context.getConfiguration()).create(httpDest,true);
IOUtils.copyBytes(is, os, context.getConfiguration(), true);
} catch(Throwable t){
t.printStackTrace();
}finally {
IOUtils.closeStream(is);
IOUtils.closeStream(os);
}
context.write(value, null);
//context.write(new Text (httpDest.getName()), new Text (os.toString()));
}
}
Mapper Only Job:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class HadoopHttpClientJob {
private static final String data_input_directory = “YOUR_INPUT_DIR”;
private static final String data_output_directory = “YOUR_OUTPUT_DIR”;
public HadoopHttpClientJob() {
}
public static void main(String... args) {
try {
Configuration conf = new Configuration();
Path test_data_in = new Path(data_input_directory, "urls.txt");
Path test_data_out = new Path(data_output_directory);
#SuppressWarnings("deprecation")
Job job = new Job(conf, "HadoopHttpClientMap" + System.currentTimeMillis());
job.setJarByClass(HadoopHttpClientJob.class);
FileSystem fs = FileSystem.get(conf);
fs.delete(test_data_out, true);
job.setMapperClass(HadoopHttpClientMap.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setNumReduceTasks(0);
FileInputFormat.addInputPath(job, test_data_in);
FileOutputFormat.setOutputPath(job, test_data_out);
job.waitForCompletion(true);
}catch (Throwable t){
t.printStackTrace();
}
}
}
Step 2: Create external table in Hive based on the HDFS directory. Remember to use Hive SerDe for the JSON data (in your case) then you can copy the data from external table into managed master tables. This is the step where you implement your incremental logics, compression..
Step 3: Point your hive queries (which you might have already created) to the master table to implement your business needs.
Note: If you are supposedly referring to realtime analysis or streaming api, you might have to change your application's architecture. Since you have asked architectural question, I am using my best educated guess to support you. Please go through this once. If you feel you can implement this in your application then you can ask the specific question, I will try my best to address them.
I am trying to do mapside join of two tables located in Hbase. My aim is to keep record of the small table in hashmap and compare with the big table, and once matched, write record in a table in hbase again. I wrote the similar code for join operation using both Mapper and Reducer and it worked well and both tables are scanned in mapper class. But since reduce side join is not efficient at all, I want to join the tables in mapper side only. In the following code "commented if block" is just to see that it returns false always and first table (small one) is not getting read. Any hints helps are appreciated. I am using sandbox of HDP.
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
//import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.util.Tool;
import com.sun.tools.javac.util.Log;
import java.io.IOException;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapred.TableOutputFormat;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableSplit;
public class JoinDriver extends Configured implements Tool {
static int row_index = 0;
public static class JoinJobMapper extends TableMapper<ImmutableBytesWritable, Put> {
private static byte[] big_table_bytarr = Bytes.toBytes("big_table");
private static byte[] small_table_bytarr = Bytes.toBytes("small_table");
HashMap<String,String> myHashMap = new HashMap<String, String>();
byte[] c1_value;
byte[] c2_value;
String big_table;
String small_table;
String big_table_c1;
String big_table_c2;
String small_table_c1;
String small_table_c2;
Text mapperKeyS;
Text mapperValueS;
Text mapperKeyB;
Text mapperValueB;
public void map(ImmutableBytesWritable rowKey, Result columns, Context context) {
TableSplit currentSplit = (TableSplit) context.getInputSplit();
byte[] tableName = currentSplit.getTableName();
try {
Put put = new Put(Bytes.toBytes(++row_index));
// put small table into hashmap - myhashMap
if (Arrays.equals(tableName, small_table_bytarr)) {
c1_value = columns.getValue(Bytes.toBytes("s_cf"), Bytes.toBytes("s_cf_c1"));
c2_value = columns.getValue(Bytes.toBytes("s_cf"), Bytes.toBytes("s_cf_c2"));
small_table_c1 = new String(c1_value);
small_table_c2 = new String(c2_value);
mapperKeyS = new Text(small_table_c1);
mapperValueS = new Text(small_table_c2);
myHashMap.put(small_table_c1,small_table_c2);
} else if (Arrays.equals(tableName, big_table_bytarr)) {
c1_value = columns.getValue(Bytes.toBytes("b_cf"), Bytes.toBytes("b_cf_c1"));
c2_value = columns.getValue(Bytes.toBytes("b_cf"), Bytes.toBytes("b_cf_c2"));
big_table_c1 = new String(c1_value);
big_table_c2 = new String(c2_value);
mapperKeyB = new Text(big_table_c1);
mapperValueB = new Text(big_table_c2);
// if (set.containsKey(big_table_c1)){
put.addColumn(Bytes.toBytes("join"), Bytes.toBytes("join_c1"), Bytes.toBytes(big_table_c1));
context.write(new ImmutableBytesWritable(mapperKeyB.getBytes()), put );
put.addColumn(Bytes.toBytes("join"), Bytes.toBytes("join_c2"), Bytes.toBytes(big_table_c2));
context.write(new ImmutableBytesWritable(mapperKeyB.getBytes()), put );
put.addColumn(Bytes.toBytes("join"), Bytes.toBytes("join_c3"),Bytes.toBytes((myHashMap.get(big_table_c1))));
context.write(new ImmutableBytesWritable(mapperKeyB.getBytes()), put );
// }
}
} catch (Exception e) {
// TODO : exception handling logic
e.printStackTrace();
}
}
}
public int run(String[] args) throws Exception {
List<Scan> scans = new ArrayList<Scan>();
Scan scan1 = new Scan();
scan1.setAttribute("scan.attributes.table.name", Bytes.toBytes("small_table"));
System.out.println(scan1.getAttribute("scan.attributes.table.name"));
scans.add(scan1);
Scan scan2 = new Scan();
scan2.setAttribute("scan.attributes.table.name", Bytes.toBytes("big_table"));
System.out.println(scan2.getAttribute("scan.attributes.table.name"));
scans.add(scan2);
Configuration conf = new Configuration();
Job job = new Job(conf);
job.setJar("MSJJ.jar");
job.setJarByClass(JoinDriver.class);
TableMapReduceUtil.initTableMapperJob(scans, JoinJobMapper.class, ImmutableBytesWritable.class, Put.class, job);
TableMapReduceUtil.initTableReducerJob("joined_table", null, job);
job.setNumReduceTasks(0);
job.waitForCompletion(true);
return 0;
}
public static void main(String[] args) throws Exception {
JoinDriver runJob = new JoinDriver();
runJob.run(args);
}
}
By reading your problem statement I believe you have got some wrong idea about uses of Multiple HBase table input.
I suggest you load small table in a HashMap, in setup method of mapper class. Then use map only job on big table, in map method you can fetch corresponding values from the HashMap which you loaded earlier.
Let me know how this works out.
I have written a mapreduce program that reads the data from hive table using HCATLOG and writes into HBase. This is a map only job with no reducers. I have ran the program from command line and it works as expected(Created a fat jar to avoid Jar issues). I wanted to integrate it oozie (with Help of HUE) . I have two options to run it
Use Mapreduce Action
Use Java Action
Since my Mapreduce program has a driver method that holds the below code
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.util.*;
import org.apache.hadoop.fs.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hive.hcatalog.data.schema.HCatSchema;
import org.apache.hive.hcatalog.mapreduce.HCatInputFormat;
import org.apache.hive.hcatalog.mapreduce.HCatOutputFormat;
public class HBaseValdiateInsertDriver {
public static void main(String[] args) throws Exception {
String dbName = "Test";
String tableName = "emp";
Configuration conf = new Configuration();
args = new GenericOptionsParser(conf, args).getRemainingArgs();
Job job = new Job(conf, "HBase Get Put Demo");
job.setInputFormatClass(HCatInputFormat.class);
HCatInputFormat.setInput(job, dbName, tableName, null);
job.setJarByClass(HBaseValdiateInsertDriver.class);
job.setMapperClass(HBaseValdiateInsert.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setNumReduceTasks(0);
FileInputFormat.addInputPath(job, new Path("maprfs:///user/input"));
FileOutputFormat.setOutputPath(job, new Path("maprfs:///user/output"));
job.waitForCompletion(true);
}
}
How do i specify the driver method in oozie, All that i can see is to specify mapper and reducer class.Can someone guide me how do i set the properties ?
Using java action i can specify my driver class as the main class and get this executed , but i face errors like table not found, HCATLOG jars not found etc. I have include hive-site.xml in the workflow(Using Hue) but i feel the system is not able to pick up the properties. Can someone advise me what all do i have to take care of, are there any other configuration properties that i need to include ?
Also the sample program i referred in cloudera website uses
HCatInputFormat.setInput(job, InputJobInfo.create(dbName,
inputTableName, null));
where as i use the below (I dont see a method that accept the above input
HCatInputFormat.setInput(job, dbName, tableName, null);
Below is my mapper code
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.client.Durability;
import org.apache.hadoop.hbase.client.Get;
import org.apache.hadoop.hbase.client.HTableInterface;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hive.hcatalog.data.HCatRecord;
public class HBaseValdiateInsert extends Mapper<WritableComparable, HCatRecord, Text, Text> {
static HTableInterface table;
static HTableInterface inserted;
private String hbaseDate = null;
String existigValue=null;
List<Put> putList = new ArrayList<Put>();
#Override
public void setup(Context context) throws IOException {
Configuration conf = context.getConfiguration();
String tablename = "dev_arch186";
Utils.getHBConnection();
table = Utils.getTable(tablename);
table.setAutoFlushTo(false);
}
#Override
public void cleanup(Context context) {
try {
table.put(putList);
table.flushCommits();
table.close();
} catch (IOException e) {
e.printStackTrace();
}
Utils.closeConnection();
}
#Override
public void map(WritableComparable key, HCatRecord value, Context context) throws IOException, InterruptedException {
String name_hive = (String) value.get(0);
String id_hive = (String) value.get(1);
String rec[] = test.toString().split(",");
Get g = new Get(Bytes.toBytes(name_hive));
existigValue=getOneRecord(Bytes.toBytes("Info"),Bytes.toBytes("name"),name_hive);
if (existigValue.equalsIgnoreCase("NA") || !existigValue.equalsIgnoreCase(id_hive)) {
Put put = new Put(Bytes.toBytes(rec[0]));
put.add(Bytes.toBytes("Info"),
Bytes.toBytes("name"),
Bytes.toBytes(rec[1]));
put.setDurability(Durability.SKIP_WAL);
putList.add(put);
if(putList.size()>25000){
table.put(putList);
table.flushCommits();
}
}
}
public String getOneRecord(byte[] columnFamily, byte[] columnQualifier, String rowKey)
throws IOException {
Get get = new Get(rowKey.getBytes());
get.setMaxVersions(1);
Result rs = table.get(get);
rs.getColumn(columnFamily, columnQualifier);
System.out.println(rs.containsColumn(columnFamily, columnQualifier));
KeyValue result = rs.getColumnLatest(columnFamily,columnQualifier);
if (rs.containsColumn(columnFamily, columnQualifier))
return (Bytes.toString(result.getValue()));
else
return "NA";
}
public boolean columnQualifierExists(String tableName, String ColumnFamily,
String ColumnQualifier, String rowKey) throws IOException {
Get get = new Get(rowKey.getBytes());
Result rs = table.get(get);
return(rs.containsColumn(ColumnFamily.getBytes(),ColumnQualifier.getBytes()));
}
}
Note:
I use MapR (M3) Cluster with HUE as the interface for oozie.
Hive Version : 1-0
HCAT Version: 1-0
I couldn't find any way to initialize HCatInputFormat from Oozie mapreduce action.
But I have a workaround as below.
Created LazyHCatInputFormat by extending HCatInputFormat.
Override the getJobInfo method, to handle initalization. This will be called as part of getSplits(..) call.
private static void lazyInit(Configuration conf){
try{
if(conf==null){
conf = new Configuration(false);
}
conf.addResource(new Path(System.getProperty("oozie.action.conf.xml")));
conf.addResource(new org.apache.hadoop.fs.Path("hive-config.xml"));
String databaseName = conf.get("LazyHCatInputFormat.databaseName");
String tableName = conf.get("LazyHCatInputFormat.tableName");
String partitionFilter = conf.get("LazyHCatInputFormat.partitionFilter");
setInput(conf, databaseName, tableName);
//setFilter(partitionFilter);
//System.out.println("After lazyinit : "+conf.get("mapreduce.lib.hcat.job.info"));
}catch(Exception e){
System.out.println("*** LAZY INIT FAILED ***");
//e.printStackTrace();
}
}
public static InputJobInfo getJobInfo(Configuration conf)
throws IOException {
String jobString = conf.get("mapreduce.lib.hcat.job.info");
if (jobString == null) {
lazyInit(conf);
jobString = conf.get("mapreduce.lib.hcat.job.info");
if(jobString == null){
throw new IOException("job information not found in JobContext. HCatInputFormat.setInput() not called?");
}
}
return (InputJobInfo) HCatUtil.deserialize(jobString);
}
In the oozie map-redcue action, configured as below.
<property>
<name>mapreduce.job.inputformat.class</name>
<value>com.xyz.LazyHCatInputFormat</value>
</property>
<property>
<name>LazyHCatInputFormat.databaseName</name>
<value>HCAT DatabaseNameHere</value>
</property>
<property>
<name>LazyHCatInputFormat.tableName</name>
<value>HCAT TableNameHere</value>
</property>
This might not be the best implementation, but a quick hack to make it work.
I am a beginner in Hadoop. When trying to set the number of reducers using command line using Generic Options Parser, the number of reducers is not changing. There is no property set in the configuration file "mapred-site.xml" for the number of reducers and I think, that would make the number of reducers=1 by default. I am using cloudera QuickVM and hadoop version : "Hadoop 2.5.0-cdh5.2.0".
Pointers Appreciated. Also my issue was I wanted to know the preference order of the ways to set the number of reducers.
Using configuration File "mapred-site.xml"
mapred.reduce.tasks
By specifying in the driver class
job.setNumReduceTasks(4)
By specifying at the command line using Tool interface:
-Dmapreduce.job.reduces=2
Mapper :
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>
{
#Override
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException
{
String line = value.toString();
//Split the line into words
for(String word: line.split("\\W+"))
{
//Make sure that the word is legitimate
if(word.length() > 0)
{
//Emit the word as you see it
context.write(new Text(word), new IntWritable(1));
}
}
}
}
Reducer :
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
#Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException
{
//Initializing the word count to 0 for every key
int count=0;
for(IntWritable value: values)
{
//Adding the word count counter to count
count += value.get();
}
//Finally write the word and its count
context.write(key, new IntWritable(count));
}
}
Driver :
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class WordCount extends Configured implements Tool
{
public int run(String[] args) throws Exception
{
//Instantiate the job object for configuring your job
Job job = new Job();
//Specify the class that hadoop needs to look in the JAR file
//This Jar file is then sent to all the machines in the cluster
job.setJarByClass(WordCount.class);
//Set a meaningful name to the job
job.setJobName("Word Count");
//Add the apth from where the file input is to be taken
FileInputFormat.addInputPath(job, new Path(args[0]));
//Set the path where the output must be stored
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//Set the Mapper and the Reducer class
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
//Set the type of the key and value of Mapper and reducer
/*
* If the Mapper output type and Reducer output type are not the same then
* also include setMapOutputKeyClass() and setMapOutputKeyValue()
*/
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//job.setNumReduceTasks(4);
//Start the job and wait for it to finish. And exit the program based on
//the success of the program
System.exit(job.waitForCompletion(true)?0:1);
return 0;
}
public static void main(String[] args) throws Exception
{
// Let ToolRunner handle generic command-line options
int res = ToolRunner.run(new Configuration(), new WordCount(), args);
System.exit(res);
}
}
And I have tried the following commands to run the job :
hadoop jar /home/cloudera/Misc/wordCount.jar WordCount -Dmapreduce.job.reduces=2 hdfs:/Input/inputdata hdfs:/Output/wordcount_tool_D=2_take13
and
hadoop jar /home/cloudera/Misc/wordCount.jar WordCount -D mapreduce.job.reduces=2 hdfs:/Input/inputdata hdfs:/Output/wordcount_tool_D=2_take14
Answering your query on order. It would always be 2>3>1
The option specified in your driver class takes precedence over the ones you specify as an argument to your GenOptionsParser or the ones you specify in your site specific config.
I would recommend debugging the configurations inside your driver class by printing it out before you submit the job. This way , you can be sure what the configurations are , right before you submit the job to the cluster.
Configuration conf = getConf(); // This is available to you since you extended Configured
for(Entry entry: conf)
//Sysout the entries here
I was wondering how the distributed mahout recommender job org.apache.mahout.cf.taste.hadoop.item.RecommenderJob handled csv files where duplicate and triplicate user,item entries exist but with different preference values. For example, if I had a .csv file that had entries like
1,1,0.7
1,2,0.7
1,2,0.3
1,3,0.7
1,3,-0.7
How would Mahout's datamodel handle this? Would it sum up the preference values for a given user,item entry (e.g. for user item 1,2 the preference would be (0.7 + 0.3)), or does it average the values (e.g. for user item 1,2 the preference is (0.7 + 0.3)/2) or does it default to the last user,item entry it detects (e.g. for user 1,2 the preference value is set to 0.3).
I ask this question because I am considering recommendations based on multiple preference metrics (item views, likes, dislikes, saves to shopping cart, etc.). It would be helpful if the datamodel treated the preference values as linear weights (e.g. item views plus save to wish list has higher preference score than item views). If datamodel already handles this by summing, it would save me the chore of an additional map-reduce to sort and calculate total scores based on multiple metrics. Any clarification anyone could provide on mahout .csv datamodel works in this respect for org.apache.mahout.cf.taste.hadoop.item.RecommenderJob would be really appreciated. Thanks.
No, it overwrites. The model is not additive. However the model in Myrrix, a derivative of this code (that I'm commercializing) has a fundamentally additive data modet, just for the reason you give. The input values are weights and are always added.
merge it before starting computation.
examples:
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
public final class Merge {
public Merge() {
}
public static class MergeMapper extends MapReduceBase implements
Mapper<LongWritable, Text, Text, FloatWritable> {
public void map(LongWritable key, Text value, OutputCollector<Text, FloatWritable> collector,
Reporter reporter) throws IOException {
// TODO Auto-generated method stub
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
if (tokenizer.hasMoreTokens()) {
String userId = tokenizer.nextToken(",");
String itemId = tokenizer.nextToken(",");
FloatWritable score = new FloatWritable(Float.valueOf(tokenizer.nextToken(",")));
collector.collect(new Text(userId + "," + itemId), score);
}
else {
System.out.println("empty line " + line);
}
}
}
public static class MergeReducer extends MapReduceBase implements
Reducer<Text, FloatWritable, Text, FloatWritable> {
public void reduce(Text key, Iterator<FloatWritable> scores,
OutputCollector<Text, FloatWritable> collector, Reporter reporter) throws IOException {
// TODO Auto-generated method stub
float sum = 0.0f;
while (scores.hasNext()) {
sum += scores.next().get();
}
if (sum != 0.0)
collector.collect(key, new FloatWritable(sum));
}
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
JobConf conf = new JobConf(Merge.class);
conf.setJobName("Merge Data");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(FloatWritable.class);
conf.setMapperClass(MergeMapper.class);
// combine the same key items
conf.setCombinerClass(MergeReducer.class);
conf.setReducerClass(MergeReducer.class);
conf.setInputFormat(TextInputFormat.class);
conf.set("mapred.textoutputformat.separator", ",");
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path("hdfs://localhost:49000/tmp/data"));
FileOutputFormat.setOutputPath(conf, new Path("hdfs://localhost:49000/tmp/data/output"));
JobClient.runJob(conf);
}
}