d3.js find top and bottom limits of quantize scale - d3.js

I've made a map in d3 that is tinted my values, so I've got:
var color= d3.scale.quantize().range(["#FAE3C3", "#EBAD95","#DB7768", "#CC403A", "#BC0A0C"]);
How does one find the actual limits of the scale, so I can create the map key? (I'd want it to update if I fed in new data).

You can get back the lower and upper bounds for a bin like so:
var bounds = color.invertExtent('#FAE3C3')
A possible solution for a legend would be to iterate through the color array and call color.invertExtent for each color.
If you want tidier breakpoints, I think you have to define them yourself and set them as the domain, for example if your minimum is 2 and your maximum is 59 you could do the following:
color= d3.scale.quantize()
.domain([0, 60])
.range(["#FAE3C3", "#EBAD95","#DB7768", "#CC403A", "#BC0A0C"]);
so that maximum - minumum is divisible by the number of colors.

Related

dc.js heatmap - make the top row rects to begin at y="0"

I have a dc.js heatmap working:
But I want to add grid lines to it, like so:
You can see that the lines to not match up with the bottom edges of the rects. Inserting the lines themselves is easy, you just start at zero and add 11 lines based on the height of the rects, which in this case will always be 11 / chart.effectiveHeight().
The reason they do not match up, seems to be that the top rect row does not always start at 0, instead, there seems to be a random(?) y position that the chart starts at, this will change with the height of the chart container, eg this y position starts at 5:
If it was consistent, then I could just start appending lines from that number instead of 0, but it is not. I have tried a couple of hacky work arounds, however I am unsure as to how to get the y position of all the rects after they are available in the DOM.
Interestingly the demo heatmap does not have this issue:
Here is the code for the heatmap:
const heat_map = dc.heatMap('#heatmap');
heat_map
.width(0)
.height(0)
.margins(margins)
.dimension(hm_dim)
.group(hm_group)
.keyAccessor(function(d) { return +d.key[0]; })
.valueAccessor(function(d) { return +d.key[1]; })
.colorAccessor(function(d) { return +d.value; })
.colors(color_scale)
.calculateColorDomain()
.yBorderRadius(0)
.xBorderRadius(0)
heat_map.render();
Is there a way to force the rects to begin at 0? Or get the random y position for the top rows? I did have a look at the source code but got a bit lost. Also I thought about creating a false group that would include each rect in the grid, and the grid lines could then be rect borders, but I thought that was a bit heavy handed.
Outlining the cells using CSS
It's easy to outline the cells using CSS:
rect.heat-box {
stroke-width: 1;
stroke: black;
}
Example fiddle.
However, as you point out, this only works if all the cells have values; crossfilter will not create the empty ones and I agree it would be absurd fill them in using a fake group just for some lines.
So, to answer your original question...
Why is there a gap at the top of the chart?
The heatmap calculates an integer size for the cells, and there may be space left over (since the space doesn't divide perfectly).
It's kind of nasty but the heatmap example avoids having extra space by calculating the width and height for the chart using the count of cells in each dimension:
chart
.width(45 * 20 + 80)
.height(45 * 5 + 40)
The default margins are {top: 10, right: 50, bottom: 30, left: 30} so this allocates 45x45 pixels for each cell and adds on the margins to get the right chart size.
Since the heatmap in this example draws 20 columns by 5 rows, it will calculate the cell width and height as 45.
Alternative Answer for Responsive/Resizable Charts
I am revisiting this question after rewriting my heatmap chart to be responsive - using the "ResizeObserver" method outlined in the dc.js resizing examples and Gordon's answer to this question
While specifying the chart width and height for the heatmap in Gordon's answer still works, it does not combine well with the resizing method because resized charts will have their .width and .height set to 'null'. Which means that this rounding issue will reoccur and the heat boxes will be again be offset by a random integer x or y value of anywhere between 0 and 5 (unless you want to write a custom resizing function for heatmaps).
The alternative answer is relatively simple and can be determined by selecting just one heat-box element in the heatmap.
The vertical offset value for the heat boxes is the remainder value when the heat-box y attribute is divided by the heat-box height attribute.
const heatbox_y = heat_map.select('.heat-box').attr('y);
const heatbox_height = heat_map.select('.heat-box').attr('height')
const vertical_offset = heatbox_y % heatbox_height
The modulus % will return the remainder.
The horizontal offset can be determined in the same way.
Thus you can append lines to the chart at regular intervals determined by the heatbox_height + the vertical_offset values.
This will work if you pick any heat-box in the chart, and so it is suitable for instances like this where you cannot guarantee that there will be a heat-box at each x or y level. And it means that you are free to set your chart height and width to 'null' if needed.

dcjs dynamic zooming to fit range of values

I have a rowchart in DCjs that plots the top N values of a given parameter. However, for the unfiltered data these differ from each other by a very small number.
I've had to label each row with it's unique identifier, as my random generator produced two identical names, meaning that if I use name as the dimension, I end up with one of ten thousand data points having a value greater than 100%.
However, the main problem here is that the difference between each row is tiny, and can be around 0.0001.
However if I zoom in on that part of the x-axis using
var max = dim.top[1][0].value;
var min = dim.top(10)[9].value;
chart
.dimension(dim)
.group(group)
.x(d3.scaleLinear()
.range([-100, chart.width()])
.domain([min-(max-min)*0.1,max])
)
.cap(10)
.othersGrouper(null)
.colors(['#ff0000']);
Firstly I loose the ID label on the left. Secondly as I also have to use .elasticX(false) for the zooming to work, it means that when I add filters, the range of the x-axis doesn't change with the values e.g.
Is there a way to get dynamic zooming such that the range of the x-axis depends on the range of values presented?
elasticX is a really simple feature which does pretty much what your code does, although it locks the min or max to zero depending if the data is positive or negative:
var extent = d3.extent(_rowData, _chart.cappedValueAccessor);
if (extent[0] > 0) {
extent[0] = 0;
}
if (extent[1] < 0) {
extent[1] = 0;
}
(calculateAxisScale source)
This code gets called (indirectly) before each render and redraw.
Here's some general purpose advice for when elasticX or elasticY doesn't do exactly what you want. I've never seen it fail! (Which is saying something in such a quirky codebase as dc.js.)
First, disable elasticX. Then create a function which calculates the X domain and sets it:
function custom_elastic(chart) {
var max = chart.dimension().top[1][0].value;
var min = chart.dimension().top(10)[9].value;
chart.x().domain([min,max]);
}
I've parameterized it on the chart for generality.
Now we can have this function called on the preRender and preRedraw events. These events will pass the chart when they fire:
chart.on('preRender', custom_elastic)
.on('preRedraw', custom_elastic);
And that should do it!
BTW, you probably don't want to set the range of the scale - this is set automatically by the chart, and it's a little more complicated than you have it since it takes margins into account.
Debugging the min and max
Looking at your fiddle I realized that I hadn't given a second look to how you are calculating the min and max.
I also hadn't noticed that you had the range start at -100.
Good first step logging it; it reports
min: 0.81, max: 0.82
which is incorrect. The top ten are from 0.96 to 1.
The issue is that the dimension's key is the id, so the rows returned by .top() are in reverse alphabetical order (the "largest" strings).
Again you're on the right track with
console.log(Group.top(Infinity))
Yes! The group will give you the top 10 by value.
var top10 = thischart.group().top(10);
var max = top10[0].value;
var min = top10[9].value;
Nice!
fiddle
But wait, doesn't it look like the bars are stretching off the left side of the chart?
Hacking the row chart with a renderlet to draw bars starting at the left edge
Okay now it's clear that the row chart doesn't support this. Here is a hack to resize the bars to the left edge:
chart.on('renderlet', function(chart) {
var transform = chart.select('g.row rect').attr('transform');
var tx = +transform.split('(')[1].split(',')[0];
chart.selectAll('g.row rect')
.attr('transform', null)
.attr('width', function(d) {
return +d3.select(this).attr('width') + tx;
})
chart.selectAll('g.row text.row')
.attr('transform', null);
})
All the row rects are going to be offset by a large negative number, which we grab first in tx. Then we remove the transform from both the rects and the text, and add tx to the width of the row rects.
fiddle
Great! But where's the last bar? Well, we took the top ten values for the min and max, so the tenth bar is the minimum value.
You'll have to figure out what works for you, but I found that looking at the top 20 values left the top 10 at good sizes:
var N = 20;
var topN = thischart.group().top(N);
var max = topN[0].value;
var min = topN[N-1].value;
final fiddle
This hack does not play well with the built-in transitions, so I turned them off for this chart:
chart.transitionDuration(0)
It would be a lot more work to hack that part, and better to fix it in the chart itself.

d3 floating grouped bar with ranged values in a timeline

im trying to understand what tools i need to use as im new to d3 and didnt find any thing related...
i need a area chart that is like bars but can float and be on multiple values both on the x and y axis.
in this example the values are days but it might be hours/months etc...
need to know the direction i need to go.. / the right term to search...
There's no significant difference between drawing this chart and a normal bar chart.
And you need to define some scales that will map the values in your data to co-ordinates on your chart.
You need to draw some rect shapes.
So, in the above example you would define a time scale that, given an input date, will map that to a certain x co-ordinate on your chart. You can then use that to determine both the x co-ordinate for where the left-hand-side of a rectangle will be, and to work out how wide the rectangle needs to be.
const xScale = d3.scaleTime()
.domain([d3.min(dateValuesInMyDataset, d => d.date), d3.max(dateValuesInMyDataset, d => d.date)])
.range([0, widthOfMyChart]);
The above xScale if given the earliest date in your dataset would return the value 0, because this is the x co-ordinate representing that date.
Similarly, you would want to construct a linear scale which defines how to map the numerical range of values in your dataset, to the y co-ordinates in your chart. Then you can use the scale to determine the y value and height of all of the rectangles in your chart.
There are lots of good examples of this on ObservableHQ.com that you can browse and see the code for.

How to get the boundaries of currently visible time scale (after panning and zooming)?

I would like to load in additional data points for the graph only if it scales or translates. Suppose I have a graph for the specific time range (http://codepen.io/jayarjo/pen/gzfyj), now if the user pans or zooms it to a wider range I want to load a wider data corresponding to that range and plot additional data points. I'm not sure how to get the currently visible date range from the D3...?
Simply retrieve inverted values of the beginning and ending points of your scale, which apparently are 0 and width of the scale:
var startDate = x.invert(0);
var endDate = x.invert(width); // where width is the visible width of the x scale

D3's scale not working properly

Well, I'm starting with D3 and I'm trying to create a vertical bar chart.
I really don't know what's happening but some things are not working as expected for me (maybe because I'm just a noob on the matter).
I'm using line scales, works pretty well with axes, but it's miscalculating the height of the bars, for instance the higher values are not displayed (because of the low value of the result).
I've used the d3.max to determine the range. I really don't get what's happening.
var yScaleLeft = d3.scale.linear()
.domain([0, d3.max(stats)])
.range([realHeight, 0]);
.attr("height", function(d) {
return yScaleLeft(d);
});
Here is the code: http://jsfiddle.net/aKhhb/ Look at * Scales * and // Stats bars
(Just forget about the x-alignement of the bars, I will see that later, I want to set its height properly)
Thanks a lot! Y saludos desde Chile :)
The issue is that your input and output ranges are mirrored -- that is, the largest input value maps to the smallest output value. That is fine, but you need to take it into account when calculating the y and height attributes. Essentially, you had the calculations for both reversed.
Fixed fiddle here. I've also fixed the x axis by adding your margin and half of the bar width to the computed x positions. Oh and you don't need parseInt() when doing calculations, only when you actually want to parse an integer from a string.

Resources