What is the intuition behind the Fibonacci heap data structure? - data-structures

I've read the Wikipedia article on Fibonacci heaps and read CLRS's description of the data structure, but they provide little intuition for why this data structure works. Why are Fibonacci heaps designed the way they are? How do they work?
Thanks!

This answer is going to be pretty long, but I hope it helps provide some insight as to where the Fibonacci heap comes from. I'm going to assume that you're already familiar with binomial heaps and amortized analysis.
Motivation: Why Fibonacci Heaps?
Before jumping into Fibonacci heaps, it's probably good to explore why we even need them in the first place. There are plenty of other types of heaps (binary heaps and binomial heaps, for example), so why do we need another one?
The main reason comes up in Dijkstra's algorithm and Prim's algorithm. Both of these graph algorithms work by maintaining a priority queue holding nodes with associated priorities. Interestingly, these algorithms rely on a heap operation called decrease-key that takes an entry already in the priority queue and then decreases its key (i.e. increases its priority). In fact, a lot of the runtime of these algorithms is explained by the number of times you have to call decrease-key. If we could build a data structure that optimized decrease-key, we could optimize the performance of these algorithms. In the case of the binary heap and binomial heap, decrease-key takes time O(log n), where n is the number of nodes in the priority queue. If we could drop that to O(1), then the time complexities of Dijkstra's algorithm and Prim's algorithm would drop from O(m log n) to (m + n log n), which is asymptotically faster than before. Therefore, it makes sense to try to build a data structure that supports decrease-key efficiently.
There is another reason to consider designing a better heap structure. When adding elements to an empty binary heap, each insertion takes time O(log n). It's possible to build a binary heap in time O(n) if we know all n elements in advance, but if the elements arrive in a stream this isn't possible. In the case of the binomial heap, inserting n consecutive elements takes amortized time O(1) each, but if insertions are interlaced with deletions, the insertions may end up taking Ω(log n) time each. Therefore, we might want to search for a priority queue implementation that optimizes insertions to take time O(1) each.
Step One: Lazy Binomial Heaps
To start off building the Fibonacci heap, we're going to begin with a binomial heap and modify it try to make insertions take time O(1). It's not all that unreasonable to try this out - after all, if we're going to do a lot of insertions and not as many dequeues, it makes sense to optimize insertions.
If you'll recall, binomial heaps work by storing all of the elements in the heap in a collection of binomial trees. A binomial tree of order n has 2n nodes in it, and the heap is structures as a collection of binomial trees that all obey the heap property. Typically, the insertion algorithm in a binomial heap work as follows:
Create a new singleton node (this is a tree of order 0).
If there is a tree of order 0:
Merge the two trees of order 0 together into a tree of order 1.
If there is a tree of order 1:
Merge the two trees of order 1 together into a tree order 2.
If there is a tree of order 2:
...
This process ensures that at each point in time, there is at most one tree of each order. Since each tree holds exponentially more nodes than its order, this guarantees that the total number of trees is small, which lets dequeues run quickly (because we don't have to look at too many different trees after doing a dequeue-min step).
However, this also means that the worst-case runtime of inserting a node into a binomial heap is Θ(log n), because we might have Θ(log n) trees that need to get merged together. Those trees need to be merged together only because we need to keep the number of trees low when doing a dequeue step, and there's absolutely no benefit in future insertions to keeping the number of trees low.
This introduces the first departure from binomial heaps:
Modification 1: When inserting a node into the heap, just create a tree of order 0 and add it to the existing collection of trees. Do not consolidate trees together.
There is another change we can make. Normally, when we merge together two binomial heaps, we do a merge step to combine them together in a way that ensures that there is at most one tree of each order in the resulting tree. Again, we do this compression so that dequeues are fast, and there's no real reason why the merge operation ought to have to pay for this. Therefore, we'll make a second change:
Modification 2: When merging two heaps together, just combine all their trees together without doing any merging. Do not consolidate any trees together.
If we make this change, we pretty easily get O(1) performace on our enqueue operations, since all we're doing is creating a new node and adding it to the collection of trees. However, if we just make this change and don't do anything else, we completely break the performance of the dequeue-min operation. Recall that dequeue-min needs to scan across the roots of all the trees in the heap after removing the minimum value so that it can find the smallest value. If we add in Θ(n) nodes by inserting them in the way, our dequeue operation will then have to spend Θ(n) time looking over all of these trees. That's a huge performance hit... can we avoid it?
If our insertions really just add more trees, then the first dequeue we do will certainly take Ω(n) time. However, that doesn't mean that every dequeue has to be expensive. What happens if, after doing a dequeue, we coalesce all the trees in the heap together such that we end up with only one tree of each order? This will take a long time initially, but if we start doing multiple dequeues in succession, those future dequeues will be significantly faster because there are fewer trees lying around.
There's a slight problem with this setup, though. In a normal binomial heap, the trees are always stored in order. If we just keep throwing new trees into our collection of trees, coalescing them at random times, and adding even more trees after that, there's no guarantee that the trees will be in any order. Therefore, we're going to need a new algorithm to merge those trees together.
The intuition behind this algorithm is the following. Suppose we create a hash table that maps from tree orders to trees. We could then do the following operation for each tree in the data structure:
Look up and see if there's already a tree of that order.
If not, insert the current tree into the hash table.
Otherwise:
Merge the current tree with the tree of that order, removing the old tree from the
hash table.
Recursively repeat this process.
This operation ensures that when we're done, there's at most one tree of each order. It's also relatively efficient. Suppose that we start with T total trees and end up with t total trees. The number of total merges we'll end up doing will be T - t - 1, and each time we do a merge it will take time O(1) to do it. Therefore, the runtime for this operation will be linear in the number of trees (each tree is visited at least once) plus the number of merges done.
If the number of trees is small (say, Θ(log n)), then this operation will only take time O(log n). If the number of trees is large (say, Θ(n)), then this operation will take Θ(n) time, but will leave only Θ(log n) trees remaining, making future dequeues much faster.
We can quantify just how much better things will get by doing an amortized analysis and using a potential function. Let Φ to be our potential function and let Φ be the number of trees in the data structure. This means that the costs of the operations are as follows:
Insert: Does O(1) work and increases the potential by one. Amortized cost is O(1).
Merge: Does O(1) work. The potential of one heap is dropped to 0 and the other heap's potential is increased by a corresponding amount, so there is no net change in potential. The amortized cost is thus O(1).
Dequeue-Min: Does O(#trees + #merges) work and decreases the potential down to Θ(log n), the number of trees we'd have in the binomial tree if we were eagerly merging the trees together. We can account for this in a different way. Let's have the number of trees be written as Θ(log n) + E, where E is the "excess" number of trees. In that case, the total work done is Θ(log n + E + #merges). Notice that we'll do one merge per excess tree, and so the total work done is Θ(log n + E). Since our potential drops the number of trees from Θ(log n) + E down to Θ(log n), the drop in potential is -E. Therefore, the amortized cost of a dequeue-min is Θ(log n).
Another intuitive way to see why the amortized cost of a dequeue-min is Θ(log n) is by looking at why we have surplus trees. These extra trees are there because those darned greedy inserts are making all these extra trees and not paying for them! We can therefore "backcharge" the cost associated with doing all the merges back to the individual insertions that took up all that time, leaving behind the Θ(log n) "core" operation and a bunch of other operations that we'll blame on the insertions.
Therefore:
Modification 3: On a dequeue-min operation, consolidate all trees to ensure there's at most one tree of each order.
At this point, we have insert and merge running in time O(1) and dequeues running in amortized time O(log n). That's pretty nifty! However, we still don't have decrease-key working yet. That's going to be the challenging part.
Step Two: Implementing Decrease-Key
Right now, we have a "lazy binomial heap" rather than a Fibonacci heap. The real change between a binomial heap and a Fibonacci heap is how we implement decrease-key.
Recall that the decrease-key operation should take an entry already in the heap (usually, we'd have a pointer to it) and a new priority that's lower than the existing priority. It then changes the priority of that element to the new, lower priority.
We can implement this operation very quickly (in time O(log n)) using a straightforward algorithm. Take the element whose key should be decreased (which can be located in O(1) time; remember, we're assuming we have a pointer to it) and lower its priority. Then, repeatedly swap it with its parent node as long as its priority is lower than its parent, stopping when the node comes to rest or when it reaches the root of the tree. This operation takes time O(log n) because each tree has height at most O(log n) and each comparison takes time O(1).
Remember, though, that we're trying to do even better than this - we want the runtime to be O(1)! That's a very tough bound to match. We can't use any process that will move the node up or down the tree, since those trees have heights that can be Ω(log n). We'll have to try something more drastic.
Suppose that we want to decrease the key of a node. The only way that the heap property will be violated is if the node's new priority is lower than that of its parent. If we look at the subtree rooted at that particular node, it will still obey the heap property. So here's a totally crazy idea: what if whenever we decrease the key of a node, we cut the link to the parent node, then bring the entire subtree rooted at the node back up to the top level of the tree?
Modification 4: Have decrease-key decrease the key of a node and, if its priority is smaller than its parent's priority, cut it and add it to the root list.
What will the effect of this operation be? Several things will happen.
The node that previously had our node as a child now thinks it has the wrong number of children. Recall that a binomial tree of order n is defined to have n children, but that's not true any more.
The collection of trees in the root list will go up, increasing the cost of future dequeue operations.
The trees in our heap aren't necessarily going to be binomial trees any more. They might be "formerly" binomial trees that lost children at various points in time.
Number (1) isn't too much of a problem. If we cut a node from its parent, we can just decrease the order of that node by one to indicate that it has fewer children than it thought it previously did. Number (2) also isn't a problem. We can just backcharge the extra work done in the next dequeue-min operation to the decrease-key operation.
Number (3) is a very, very serious issue that we will need to address. Here's the problem: the efficiency of a binomial heap partially stems from the fact that any collection of n nodes can be stored in a collection of Θ(log n) trees of different order. The reason for this is that each binomial tree has 2n nodes in it. If we can start cutting nodes out of trees, then we risk having trees that have a large number of children (that is, a high order) but which don't have many nodes in them. For example, suppose we start with a single tree of order k and then perform decrease-key operations on all the grandchildren of k. This leaves k as a tree with order k, but which only contains k + 1 total nodes. If we keep repeating this process everywhere, we might end up with a bunch of trees of various orders that have a very small number of children in them. Consequently, when we do our coalesce operation to group the trees together, we might not reduce the number of trees to a manageable level, breaking the Θ(log n)-time bound that we really don't want to lose.
At this point, we're in a bit of a bind. We need to have a lot of flexibility with how the trees can be reshaped so that we can get the O(1) time decrease-key functionality, but we can't let the trees get reshaped arbitrarily or we will end up with decrease-key's amortized runtime increasing to something greater than O(log n).
The insight needed - and, quite honestly, what I think is the real genius in the Fibonacci heap - is a compromise between the two. The idea is the following. If we cut a tree from its parent, we're already planning on decreasing the rank of the parent node by one. The problem really arises when a node loses a lot of children, in which case its rank decreases significantly without any nodes higher up in the tree knowing about it. Therefore, we will say that each node is only allowed to lose one child. If a node loses a second child, then we'll cut that node from its parent, which propagates the information that nodes are missing higher up in the tree.
It turns out that this is a great compromise. It lets us do decrease-keys quickly in most contexts (as long as the nodes aren't children of the same tree), and only rarely do we have to "propagate" a decrease-key by cutting a node from its parent and then cutting that node from its grandparent.
To keep track of which nodes have lost children, we'll assign a "mark" bit to each node. Each node will initial have the mark bit cleared, but whenever it loses a child it will have the bit set. If it loses a second child after the bit has already been set, we'll clear the bit, then cut the node from its parent.
Modification 5: Assign a mark bit to each node that is initially false. When a child is cut from an unmarked parent, mark the parent. When a child is cut from a marked parent, unmark the parent and cut the parent from its parent.
In this CS Theory Stack Exchange question and this older Stack Overflow question, I've sketched out a proof that shows that if trees are allowed to be modified in this way, then any tree of order n must contain at least Θ(φn) nodes, where φ is the golden ratio, about 1.61. This means that the number of nodes in each tree is still exponential in the order of the tree, though it's a lower exponent from before. As a result, the analysis we did earlier about the time complexity of the decrease-key operation still holds, though the term hidden in the Θ(log n) bit will be different.
There's one very last thing to consider - what about the complexity of decrease-key? Previously, it was O(1) because we just cut the tree rooted at the appropriate node and moved it to the root list. However, now we might have to do a "cascading cut," in which we cut a node from its parent, then cut that node from its parent, etc. How does that give O(1) time decrease-keys?
The observation here is that we can add a "charge" to each decrease-key operation that we can then spend to cut the parent node from its parent. Since we only cut a node from its parent if it's already lost two children, we can pretend that each decrease-key operation pays for the work necessary to cut its parent node. When we do cut the parent, we can charge the cost of doing so back to one of the earlier decrease-key operations. Consequently, even though any individual decrease-key operation might take a long time to finish, we can always amortize the work across the earlier calls so that the runtime is amortized O(1).
Step Three: Linked Lists Abound!
There is one final detail we have to talk about. The data structure I've described so far is tricky, but it doesn't seem catastrophically complicated. Fibonacci heaps have a reputation for being fearsome... why is that?
The reason is that in order to implement all of the operations described above, the tree structures need to be implemented in very clever ways.
Typically, you'd represent a multiway tree either by having each parent point down to all the children (perhaps by having an array of children) or by using the left-child/right-sibling representation, where the parent has a pointer to one child, which in turn points to a list of the other children. For a binomial heap, this is perfect. The main operation we need to do on trees is a join operation in which we make one root node a child of another, so it's perfectly reasonable to the pointers in the tree directed from parents to children.
The problem in a Fibonacci heap is that this representation is inefficient when considering the decrease-key step. Fibonacci heaps need to support all the basic pointer manipulations of a standard binomial heap and the ability to cut a single child from a parent.
Consider the standard representations of multiway trees. If we represent the tree by having each parent node store an array or list of pointers to its children, then we can't efficiently (in O(1)) remove a child node from the list of children. In other words, the runtime for decrease-key would be dominated by the bookkeeping step of removing the child rather than the logical step of moving a subtree to the root list! The same issue appears in the left-child, right-sibling representation.
The solution to this problem is to store the tree in a bizarre fashion. Each parent node stores a pointer to a single (and arbitrary) one of its children. The children are then stored in a circularly-linked list, and each points back up to its parent. Since it's possible to concatenate two circularly-linked lists in O(1) time and to insert or remove a single entry from one in O(1) time, this makes it possible to efficiently support the necessary tree operations:
Make one tree a child of another: if the first tree has no children, set its child pointer to point to the second tree. Otherwise, splice the second tree into the circularly-linked child list of the first tree.
Remove a child from a tree: splice that child node out of the linked list of children for the parent node. If it's the single node chosen to represent the children of the parent node, choose one of the sibling nodes to replace it (or set the pointer to null if it's the last child.)
There are absurdly many cases to consider and check when performing all these operations simply due to the number of different edge cases that can arise. The overhead associated with all the pointer juggling is one of the reasons why Fibonacci heaps are slower in practice than their asymptotic complexity might suggest (the other big one is the logic for removing the minimum value, which requires an auxiliary data structure).
Modification 6: Use a custom representation of the tree that supports efficient joining of trees and cutting one tree from another.
Conclusion
I hope this answer sheds some light on the mystery that is the Fibonacci heap. I hope that you can see the logical progression from a simpler structure (the binomial heap) to a more complex structure by a series of simple steps based on reasonable insights. It's not unreasonable to want to make insertions amortized-efficient at the expense of deletions, and it's similarly not too crazy to implement decrease-key by cutting out subtrees. From there, the rest of the details are in ensuring that the structure is still efficient, but they're more consequences of the other parts rather than causes.
If you're interested in learning more about Fibonacci heaps, you may want to check out this two-part series of lecture slides. Part one introduces binomial heaps and shows how lazy binomial heaps work. Part two explores Fibonacci heaps. These slides go into more mathematical depth than what I've covered here.

Related

Graph-heap-based implementaiton of priority queue

The OCaml reference manual provides an example of priority queue implementation.
It's graph-based implementation of a heap. I said 'heap' because each node has 0, 1 or 2 children and parent node is less than or equals than its children. However, it's not a 'binary heap' as the insertion algorithm doesn't force leaves to be left-most aligned (as it should be according to Wikipedia definition), so the tree isn't complete.
My intuition is that the tree is balanced though, as each time we insert a new node: the left sub-tree moves to the right sub-tree and the previous right sub-tree gets the node added and become new left sub-tree. The following insertion will move the previously called 'new right sub-tree' to the left and gets the node added.
So the depth of the left sub-tree never differs more than 1 from the depth of the right sub-tree, so the tree is balanced. Hence we should never end up in a tree having a linked-list form and worst case complexity should remain O(log n) - while the insertion algorithm is way simpler, as it doesn't take care of keeping the tree complete (but only balanced).
Is my intuition correct here? I make some research and didn't find out this algorithm elsewhere (instead most algorithm focus on array-based implementation, which obviously require a complete tree, otherwise some slots could be 'invalid').
Thanks
You are correct about the way that the heap maintains balance during inserts.
The removeMin operation, however, can disturb the balance, because all the left can be lower than all the elements on the right, for example. There is nothing to restore the balance, and so the balance may be lost.
So this heap does not provide any O(log N) guarantee, if N is the size of the heap. It does, though, if N is the total number of inserts, and that's not too bad. It doesn't hurt the complexity of most algorithms that use heaps.

Why is the top down approach of heap construction less efficient than bottom up even though its order of growth is lower O(log n) over O(n)?

How is the bottom up approach of heap construction of the order O(n) ? Anany Levitin says in his book that this is more efficient compared to top down approach which is of order O(log n). Why?
That to me seems like a typo.
There are two standard algorithms for building a heap. The first is to start with an empty heap and to repeatedly insert elements into it one at a time. Each individual insertion takes time O(log n), so we can upper-bound the cost of this style of heap-building at O(n log n). It turns out that, in the worst case, the runtime is Θ(n log n), which happens if you insert the elements in reverse-sorted order.
The other approach is the heapify algorithm, which builds the heap directly by starting with each element in its own binary heap and progressively coalescing them together. This algorithm runs in time O(n) regardless of the input.
The reason why the first algorithm requires time Θ(n log n) is that, if you look at the second half of the elements being inserted, you'll see that each of them is inserted into a heap whose height is Θ(log n), so the cost of doing each bubble-up can be high. Since there are n / 2 elements and each of them might take time Θ(log n) to insert, the worst-case runtime is Θ(n log n).
On the other hand, the heapify algorithm spends the majority of its time working on small heaps. Half the elements are inserted into heaps of height 0, a quarter into heaps of height 1, an eighth into heaps of height 2, etc. This means that the bulk of the work is spent inserting elements into small heaps, which is significantly faster.
If you consider swapping to be your basic operation -
In top down construction,the tree is constructed first and a heapify function is called on the nodes.The worst case would swap log n times ( to sift the element to the top of the tree where height of tree is log n) for all the n/2 leaf nodes. This results in a O(n log n) upper bound.
In bottom up construction, you assume all the leaf nodes to be in order in the first pass, so heapify is now called only on n/2 nodes. At each level, the number of possible swaps increases but the number of nodes on which it happens decreases.
For example -
At the level right above leaf nodes,
we have n/4 nodes that can have at most 1 swap each.
At its' parent level we have,
n/8 nodes that can have at most 2 swaps each and so on.
On summation, we'll come up with a O(n) efficiency for bottom up construction of a heap.
It generally refers to a way of solving a problem. Especially in computer science algorithms.
Top down :
Take the whole problem and split it into two or more parts.
Find solution to these parts.
If these parts turn out to be too big to be solved as a whole, split them further and find find solutions to those sub-parts.
Merge solutions according to the sub-problem hierarchy thus created after all parts have been successfully solved.
In the regular heapify(), we perform two comparisons on each node from top to bottom to find the largest of three elements:
Parent node with left child
The larger node from the first comparison with the second child
Bottom up :
Breaking the problem into smallest possible(and practical) parts.
Finding solutions to these small sub-problems.
Merging the solutions you get iteratively(again and again) till you have merged all of them to get the final solution to the "big" problem. The main difference in approach is splitting versus merging. You either start big and split "down" as required or start with the smallest and merge your way "up" to the final solution.
Bottom-up Heapsort, on the other hand, only compares the two children and follows the larger child to the end of the tree ("top-down"). From there, the algorithm goes back towards the tree root (“bottom-up”) and searches for the first element larger than the root. From this position, all elements are moved one position towards the root, and the root element is placed in the field that has become free.
Binary Heap can be built in two ways:
Top-Down Approach
Bottom-Up Approach
In the Top-Down Approach, first begin with 3 elements. You consider 2 of them as heaps and the third as a key k. You then create a new Heap by joining these two sub-heaps with the key as the root node. Then, you perform Heapify to maintain the heap order (either Min or Max Heap order).
The, we take two such heaps(containing 3 elements each) and another element as a k, and create a new heap. We keep repeating this process, and increasing the size of each sub-heap until all elements are added.
This process adds half the elements in the bottom level, 1/4th in the second last one, 1/8th in the third last one and so on, therefore, the complexity of this approach results in a nearly observed time of O(n).
In the bottom up approach, we first simply create a complete binary tree from the given elements. We then apply DownHeap operation on each parent of the tree, starting from the last parent and going up the tree until the root. This is a much simpler approach. However, as DownHeap's worst case is O(logn) and we will be applying it on n/2 elements of the tree; the time complexity of this particular method results in O(nlogn).
Regards.

inserting into 2-3-4 tree number of nodes

I am implementing 2-3-4 tree for some kind of memory managment.During init of my application I want to insert there some number of integers (get it as input - say n)
What is a complexity of such an insert?
O(nloglog(n))?
The complexity of the insertion on a 2-3-4 tree is O(log(n)).
We can see a quota from Wikipedia
2–3–4 trees are B-trees of order 4 (Knuth 1998)
The complexity of insertion on B-tree is O(log(n)), so is the 2-3-4 tree. By repeating inserting to initialize the 2-3-4 tree, we may say the time cost of init is O(n*log(n)). But we can expect a special way to construct [link]:
In applications, it is frequently useful to build a B-tree to represent a large existing collection of data and then update it incrementally using standard B-tree operations. In this case, the most efficient way to construct the initial B-tree is not to insert every element in the initial collection successively, but instead to construct the initial set of leaf nodes directly from the input, then build the internal nodes from these. This approach to B-tree construction is called bulkloading. Initially, every leaf but the last one has one extra element, which will be used to build the internal nodes.
The time cost may be (n + n/4 + n/16 + ... + n/(4^h)). Based on the sum of Geometric Progression. I calculate the time cost. It is less than (4/3)*n.
Please point out if I have any mistake during the calculation.

Promote a node after already lost 2 or more children

In the decrease-key operation of a Fibonacci Heap, if it is allowed to lose s > 1 children before cutting a node and melding it to the root list (promote the node), does this alter the overall runtime complexity? I think there are no changes in the complexity since the change in potential will be the same. But I am not sure if I am right.
And how can this be proved by the amortized analysis?
Changing the number of children that a node in the Fibonacci heap can lose does affect the runtime, but my suspicion is that if you're careful with how you do it you'll still get the same asymptotic runtime.
You're correct that the potential function will be unchanged if you allow each node to lose multiple children before being promoted back up to the root. However, the potential function isn't the source of the Fibonacci heap's efficiency. The reason that we perform cascading cuts (promoting multiple nodes back up to the root level during a decrease-key) is to ensure that a tree that has order n has a number of nodes in it that is exponential in n. That way, when doing a dequeue-min operation and coalescing trees together such that there is at most one tree of each order, the total number of trees required to store all the nodes is logarithmic in the number of nodes. The standard marking scheme ensures that each tree of order n has at least Θ(φn) nodes, where φ is the Golden Ratio (around 1.618...)
If you allow more nodes to be removed out of each tree before promoting them back to the root, my suspicion is that if you cap the number of missing children at some constant that you should still get the same asymptotic time bounds, but probably with a higher constant factor (because each tree holds fewer nodes and therefore more trees will be required). It might be worth writing out the math to see what recurrence relation you get for the number of nodes in each tree in case you want an exact value.
Hope this helps!

Why do Fibonacci heaps need cascading cuts?

I'm learning f-heap from 'introduction to algorithms', and the 'decrease-key' operation really confuses me -- why does this need a 'cascading-cut' ?
if this operation is removed:
the cost of make-heap(), insert(), minimum() and union() remains obviously unchanged
extract-min() is still O(D(n)), because in the O(n(H)) 'consolidate' operation, the cost of most rooted trees can be payed when they were added to the root list, and the remaining costs O(D(n))
decrease-key(): obviously O(1)
As for D(n), though i can't explain it precisely, i think it is still O(lgn), cuz without 'cascading-cut', a node may just be moved to root list a bit later, and any node hides under its father does not affect the efficiency. At least, this will not make the situation worse.
apologize for my poor english :(
anyone can help?
thanks
The reason for the cascading cut is to keep D(n) low. It turns out that if you allow any number of nodes to be cut from a tree, then D(n) can grow to be linear, which makes delete and delete-min take linear time.
Intuitively, you want the number of nodes in a tree of order k to be exponential in k. That way, you can have only logarithmically many trees in a consolidated heap. If you can cut an arbitrary number of nodes from a tree, you lose this guarantee. Specifically, you could take a tree of order k, then cut all of its grandchildren. This leaves a tree with k children, each of which are leaves. Consequently, you can create trees of order k with just k + 1 total nodes in them. This means that in the worst case you would need a tree of order n - 1 to hold all the nodes, so D(n) becomes n - 1 rather than O(log n).
Hope this helps!

Resources