Simple makefile for MPI-based C program - makefile

I am writing my first MPI-based C program. I have four files namely, MPI_Program.c and Helper.c, and their corresponding .h files. MPI_Program.c includes mpi.h and Helper.h.
I wrote the following simple makefile to compile MPI_Program but I get the error "No rule to make target mpi.h"
Here's the makefile:
# Rules to produce the target
all: MPI_Program
MPI_Program: MPI_Program.o Helper.o
mpixlc MPI_Program.o Helper.o -f machineFile -std=c99 -g -o MPI_Program
# Rules to produce the object files
Helper.o: Helper.c Helper.h
gcc -c Helper.c -std=c99 -g
MPI_Program.o: MPI_Program.c MPI_Program.h Helper.h mpi.h
mpixlc -c MPI_Program.c -std=c99 -g -f machineFile
I am certainly missing something...Can someone please advise.

Related

Im trying to compile program on Ubuntu and dont understand some things

Im a Windows dev who has no expirience on building C/C++ programs on Linux, but now I need to. Right way would be to go and learn Make and g++ compiler, but before I commit to that I want to figure out some basic stuff.
So I have .c program which is compiled with this makefile:
CUDA_VER=11.5
ifeq ($(CUDA_VER),)
$(error "CUDA_VER is not set")
endif
APP:= deepstream-test3-app
TARGET_DEVICE = $(shell gcc -dumpmachine | cut -f1 -d -)
NVDS_VERSION:=6.0
LIB_INSTALL_DIR?=/opt/nvidia/deepstream/deepstream-$(NVDS_VERSION)/lib/
APP_INSTALL_DIR?=/opt/nvidia/deepstream/deepstream-$(NVDS_VERSION)/bin/
ifeq ($(TARGET_DEVICE),aarch64)
CFLAGS:= -DPLATFORM_TEGRA
endif
SRCS:= $(wildcard *.c)
$(info info is $(SRCS))
INCS:= $(wildcard *.h)
PKGS:= gstreamer-1.0
OBJS:= $(SRCS:.c=.o)
CFLAGS+= -I../../../includes \
-I /usr/local/cuda-$(CUDA_VER)/include
CFLAGS+= $(shell pkg-config --cflags $(PKGS))
LIBS:= $(shell pkg-config --libs $(PKGS))
LIBS+= -L/usr/local/cuda-$(CUDA_VER)/lib64/ -lcudart -lnvdsgst_helper -lm \
-L$(LIB_INSTALL_DIR) -lnvdsgst_meta -lnvds_meta \
-lcuda -Wl,-rpath,$(LIB_INSTALL_DIR)
$(info info is $(CFLAGS))
all: $(APP)
%.o: %.c $(INCS) Makefile
gcc -c -o $# $(CFLAGS) $<
$(APP): $(OBJS) Makefile
gcc -o $(APP) $(OBJS) $(LIBS)
install: $(APP)
cp -rv $(APP) $(APP_INSTALL_DIR)
clean:
rm -rf $(OBJS) $(APP)
First thing I tried is to change this Makefile to compile it as C++ program. I changed .c file into .cpp, in makefile I change gcc to g++ everywhere and .c to .cpp everywhere. It gave me error that it couldnt find "main" entry point.
I gave up on that pretty fast and decided just to use lines output of original makefile, ending up with this:
g++ -c -o deepstream_test3_app.o -I../../../includes -I /usr/local/cuda-11.5/include -pthread -I/usr/include/gstreamer-1.0 -I/usr/include/glib-2.0 -I/usr/lib/x86_64-linux-gnu/glib-2.0/include ./deepstream_test3_app.cpp
g++ -o deepstream-test3-app deepstream_test3_app.o -lgstreamer-1.0 -lgobject-2.0 -lglib-2.0 -L/usr/local/cuda-11.5/lib64/ -lcudart -lnvdsgst_helper -lm -L/opt/nvidia/deepstream/deepstream-6.0/lib/ -lnvdsgst_meta -lnvds_meta -lcuda -Wl,-rpath,/opt/nvidia/deepstream/deepstream-6.0/lib/
First question, can I combine this 2 launches of g++ into one?
Second, when I make changes to "./deepstream_test3_app.cpp" they are not noticed by compiler. I added
#include <iostream>
...
std::cout << "hello!" << std::endl;
and they are ignored. Its like g++ gets as input some other copy/older version of the file and I dont understand how to go about it.
Hope for any help, sorry if it's all sounds stupid.
Ignoring for the moment the issues surrounding compiling C code with a C++ compiler,
g++ -c -o deepstream_test3_app.o -I../../../includes -I /usr/local/cuda-11.5/include -pthread -I/usr/include/gstreamer-1.0 -I/usr/include/glib-2.0 -I/usr/lib/x86_64-linux-gnu/glib-2.0/include ./deepstream_test3_app.cpp
g++ -o deepstream-test3-app deepstream_test3_app.o -lgstreamer-1.0 -lgobject-2.0 -lglib-2.0 -L/usr/local/cuda-11.5/lib64/ -lcudart -lnvdsgst_helper -lm -L/opt/nvidia/deepstream/deepstream-6.0/lib/ -lnvdsgst_meta -lnvds_meta -lcuda -Wl,-rpath,/opt/nvidia/deepstream/deepstream-6.0/lib/
First question, can I combine this 2 launches of g++ into one?
Yes. It is a common practice in makefiles to separate the compilation and linking steps, but that is not mandatory. When there are multiple sources, the separation makes it possible to limit recompilations to only the source files that have changed, but it doesn't make much difference, makefile or not, when there is only one source file.
The one-command version would be mostly a concatenation of the two commands you gave. One would omit the -c option, which instructs g++ to compile but not link, and one would omit the -o deepstream_test3_app.o, which specifies the name of the object file that we are no longer going to create. One would also omit the appearance of deepstream_test3_app.o drawn from the link (second) command, as we are going straight from source file to program. The rest of the options can be reordered to some extent, but all the -l options need to remain in the same order relative to each other and to any object files among the inputs. Here is how I would write it:
g++ -c -o deepstream_test3_app -I../../../includes -I /usr/local/cuda-11.5/include -pthread -I/usr/include/gstreamer-1.0 -I/usr/include/glib-2.0 -I/usr/lib/x86_64-linux-gnu/glib-2.0/include -Wl,-rpath,/opt/nvidia/deepstream/deepstream-6.0/lib/ ./deepstream_test3_app.cpp -lgstreamer-1.0 -lgobject-2.0 -lglib-2.0 -L/usr/local/cuda-11.5/lib64/ -lcudart -lnvdsgst_helper -lm -L/opt/nvidia/deepstream/deepstream-6.0/lib/ -lnvdsgst_meta -lnvds_meta -lcuda
Second, when I make changes to "./deepstream_test3_app.cpp" they are not noticed by compiler.
The compiler compiles the source file(s) you tell it to.
Its like g++ gets as input some other copy/older version of the file
It is possible that you are indeed telling it to compile a different version than the one you modified. It is also possible that compilation fails, so you don't get a new executable. And it is possible that when you try to run the result, you are not running the program you think you are running. We don't have enough information to know.
With regard to the last, however, do be aware that on Linux, unlike on Windows, the working directory is not automatically in the executable search path. If you want to run the compiled result from the above command, you would want to specify the path to it, which you could most easily do by prepending ./ to its simple name: ./deepstream-test3-app.

Makefile: "No such file or directory" for target file

First, I should admit makefiles are something that I'm very inexperienced at, so I apologize if this is an error that I should have been able to solve myself, but I have spent several hours on this, including reading the various answers on this site, and have been unable to discover a solution.
With that said, I have created the following makefile to compile my code on a Linux machine; it completes the sub compilations just fine, but when it comes to making the output itself, xPlatST, it throws an error.
g++ -std=c+=11 -g -Wall -pthread -c -o xPlatST.o xPlatST.cpp
g++ -std=c+=11 -g -Wall -pthread -c -o stdafx.o stdafx.cpp
g++ -std=c+=11 -g -Wall -pthread -c xPlatST xPlatST.o stdafx.o -L../hwloc
g++ error: xPlatST: No such file or directory
make: *** [xPlatST] Error 1
I believe it seems to think that the xPlatST is one of it's compilation files and thus can't find it, but for the life of me I can't work out why.
hwloc is a third party library, and should be unrelated to this issue. The code compiles just fine when compiled from the command line directly.
My files are xPlatST.cpp, xPlatST.h, stdafx.cpp, stdafh.h
Code is as follows:
CXX = g++ -std=c++11
INCLUDES =
LIBS = -L../hwloc
CXXFLAGS = -Wall -g -pthread
OBJS = xPlatST.o stdafx.o
xPlatST: ${OBJS}
${CXX} ${CXXFLAGS} ${INCLUDES} -c $# ${OBJS} ${LIBS}
clean:
-rm xPlatST *.o
Any help would be greatly appreciated; thank you in advance.
Your assumption is correct. Your recipe is trying to use xPlatST as a source. Change the -c into a -o in your rule:
${CXX} ${CXXFLAGS} ${INCLUDES} -o $# ${OBJS} ${LIBS}
The -c flag tells the compiler to take all files, compile, and assemble them into an object file (.o). The -o flag specifies the destination file.

Makefiles in multiple directories

I want to build an app and I have multiple modules stored in multiple directories. I've decided to follow this idea, i.e. to have a makefile in each directory and then to merge it. But - as a beginner programmer - I still do not see how to do that. First of all, how would such "partial" makefiles look like. They cannot have main function as there can be only one per binary, though when I try to compile it gcc complains for the undefined reference to main. Secondly, I have no idea how would putting all those modules together look like.
I would appreciate any help, but please try to keep your answers simple. Makefiles are still a bit of black magic to me.
Before you can do anything with a makefile, you must know how to do it without a makefile.
Since you are using gcc, I will assume that your source code is C++.
You haven't told us what your directory structure looks like, so I'll suppose that you have three source files in two directories: primary/main.cc, other/foo.cc and other/bar.cc. (We can deal with header files like foo.h later.) And you want to build myApp.
STEP 1: Doing It By Hand
To do this in one command, you might use:
gcc -Wall primary/main.cc other/foo.cc other/bar.cc -o myApp
This will compile the three source files and link the binary objects together into the executable myApp.
STEP 2: Doing It In Pieces (Do not attempt this until you can get the previous step to work perfectly.)
Instead of building with one command, you could take an intermediate step, compiling the source files into binary object files:
gcc -Wall -c primary/main.cc -o primary/main.o
gcc -Wall -c other/foo.cc -o other/foo.o
gcc -Wall -c other/bar.cc -o other/bar.o
This will produce alpha/main.o, beta/foo.o and beta/bar.o. The compiler won't complain about foo and bar lacking a main() function, because an object file doesn't need one. Then link the objects together into an executable:
gcc -Wall primary/main.o other/foo.o other/bar.o -o myApp
STEP 3: Doing It Locally (Do not attempt this until you can get the previous step to work perfectly.)
Just like the previous step, but we act in primary/ and other/:
cd primary
gcc -Wall -c main.cc -o main.o
cd ../other
gcc -Wall -c foo.cc -o foo.o
gcc -Wall -c bar.cc -o bar.o
cd ..
gcc -Wall primary/main.o other/foo.o other/bar.o -o myApp
STEP 4: Using a Makefile (Do not attempt this until you can get the previous step to work perfectly.)
We could have a makefile perform STEP 1, but that isn't really necessary. Write a makefile in primary (i.e. primary/makefile) like this:
main.o:
gcc -Wall -c main.cc -o main.o
(That whitespace in fromt of gcc... is a TAB.)
Now try this:
cd primary
make
cd ../other
gcc -Wall -c foo.cc -o foo.o
gcc -Wall -c bar.cc -o bar.o
cd ..
gcc -Wall primary/main.o other/foo.o other/bar.o -o myApp
STEP 5: Using Several Makefiles (Do not attempt this until you can get the previous step to work perfectly.)
Write a other/makefile:
both: foo.o bar.o
foo.o:
gcc -Wall -c foo.cc -o foo.o
bar.o:
gcc -Wall -c bar.cc -o bar.o
and a makefile in the top directory, where you're building myApp:
myApp:
gcc -Wall primary/main.o other/foo.o other/bar.o -o myApp
Now try this:
cd primary
make
cd ../other
make
cd ..
make
STEP 6: Using One Makefile That Calls Others (Do not attempt this until you can get the previous step to work perfectly.)
Edit the top makefile:
myApp:
cd primary; make
cd other; make
gcc -Wall primary/main.o other/foo.o other/bar.o -o myApp
Now try:
make
If all of this works, what you have is a crude but effective makefile system. There are many refinements possible, when you're ready to take the training wheels off.
EDIT:
If there are many source files in a subdirectory (e.g. other/) and you don't want to maintain a list in the top makefile by hand, there are several ways to handle it. This is one:
OTHER_SOURCES := $(wildcard other/*.cc)
OTHER_OBJECTS := $(OTHER_SOURCES:.cc=.o)
myApp:
cd primary; make
cd other; make
gcc -Wall primary/main.o $(OTHER_OBJECTS) -o myApp
But you should get these makefiles working and understand them, before you try any more streamlining.

File format not recognized; treating as linker script using GCC

I am pretty new to Makefiles and i am trying to build an executable from 3 files, file1.c, file2.c, and file1.h into an executable called exFile. Here's what I got:
all: exFile
exFile: file1.o file2.o
gcc -Wall -g -m32 repeat.o show.o -o repeat
file1.o: file1.c file1.h
gcc -Wall -g -m32 -S file1.c -o file1.o
file2.o: file2.c
gcc -Wall -g -m32 -S file2.c -o file2.o
I've searched the web for makefiles in this format, but i came up empty handed so i was wondering if someone can help. When it tries to compile i get:
usr/bin/ld:file1.o:1: file format not recognized; treating as linker script
I've compiled programs using assembly files but I'm not to sure what to do with c files or the file1.h file. file1.c includes file1.h so i have to link them (I think?). Any suggestions or links to a reference would be appreciated
You have two problems with your gcc command-line. First, you're specifying the -S flag, which causes gcc to emit assembly code, rather than object code. Second, you're missing the -c flag, which tells gcc to compile the file to an object file, but not link it. If you just remove -S and change nothing else, you'll end up with an executable program named file1.o and another named file2.o, rather than two object files.
Besides those errors, you could simplify your makefile by the use of pattern rules. I suggest you try the following instead:
all: exFile
exFile: file1.o file2.o
gcc -Wall -g -m32 $^ -o $#
%.o: %.c
gcc -Wall -g -m32 -c $< -o $#
file1.o: file1.h
Or, as EmployedRussian points out, you can go with something even more minimal that leverages more of the built-in features of GNU make:
CC=gcc
CFLAGS=-Wall -g -m32
all: exFile
exFile: file1.o file2.o
$(LINK.c) $^ -o $#
file1.o: file1.h
The -S switch to gcc tells it to output assembler so this:
gcc -Wall -g -m32 -S file1.c -o file1.o
Is putting assembler into file1.o but you want, presumably, to compile file1.c into object code:
gcc -Wall -g -m32 file1.c -o file1.o
When the linker gets your file1.o it is confused because file1.o is assembler when the linker is expecting object code, hence your error.
So get rid of the -S switches for file1.o and file2.o.

how can I compile header and its run file without main

I have two files without main
X.h
X.cpp
I want compile these in one makefile
My makefile is ;
CXX = g++
CXXFLAGS_W = -Werror -Wunused-variable -Wunused-value -Wunused-function \
-Wfloat-equal -Wall
CXXFLAGS_M = -ansi -pedantic-errors
CXXFLAGS = ${CXXFLAGS_M} ${CXFLAGS_W}
all: main
./main
When I use like make X , compiler gives some error "undefined reference to main ". Due to that reason, I want new makefile. X can be any name .
You would generally have something like:
X.o: X.cpp X.h
g++ -c -o X.o X.cpp # or $(CXX) $(CXXFLAGS) -c -o ...
with whatever other flags you needed. -c tells the compiler to just compile rather than compile and link, and you don't usually compile the header file directly, rather you #include it in the cpp file.
Here's a makefile which combines two separate source files into a single executable:
xy: x.o y.o
g++ -o xy x.o y.o
x.o: x.cpp x.hpp y.hpp
g++ -c -o x.o x.cpp
y.o: y.cpp y.hpp
g++ -c -o y.o y.cpp
The x.cpp file includes x.hpp and y.hpp while y.cpp only includes y.hpp. The final executable is xy.
The first rule builds the executable from the two object files. The second and third rules builds the two object files, which is what I think you're asking for in the question.

Resources