Counting the sum of every nodes' neighbors' degrees? - algorithm

For each node u in an undirected graph, let twodegree[u] be the sum of the degrees of u's neighbors. Show how to compute the entire array of twodegree[.] values in linear time, given a graph in adjacency list format.
This is the solution
for all u ∈ V :
degree[u] = 0
for all (u; w) ∈ E:
degree[u] = degree[u] + 1
for all u ∈ V :
twodegree[u] = 0
for all (u; w) ∈ E:
twodegree[u] = twodegree[u] + degree[w]
can someone explain what degree[u] does in this case and how twodegree[u] = twodegree[u] + degree[w] is supposed to be the sum of the degrees of u's neighbors?

Here, degree[u] is the degree of the node u (that is, the number of nodes adjacent to it). You can see this computed by the first loop, which iterates over all edges in the graph and increments degree[u] for each edge in the graph.
The second loop then iterates over every node in the graph and computes the sum of all its neighbors' degrees. It uses the fact that degree[u] is precomputed in order to run in O(m + n) time.
Hope this helps!

In addition to what #templatetypedef has said, the statement twodegree[u] = twodegree[u] + degree[w] simply keeps track of the twodegree of u while it keeps iteratively (or cumulatively) adding the degrees of its neighbors (that are temporarily stored in w)

Related

Find the N highest cost vertices that has a path to S, where S is a vertex in an undirected Graph G

I would like to know, what would be the most efficient way (w.r.t., Space and Time) to solve the following problem:
Given an undirected Graph G = (V, E), a positive number N and a vertex S in V. Assume that every vertex in V has a cost value. Find the N highest cost vertices that is connected to S.
For example:
G = (V, E)
V = {v1, v2, v3, v4},
E = {(v1, v2),
(v1, v3),
(v2, v4),
(v3, v4)}
v1 cost = 1
v2 cost = 2
v3 cost = 3
v4 cost = 4
N = 2, S = v1
result: {v3, v4}
This problem can be solved easily by the graph traversal algorithm (e.g., BFS or DFS). To find the vertices connected to S, we can run either BFS or DFS starting from S. As the space and time complexity of BFS and DFS is same (i.e., time complexity: O(V+E), space complexity: O(E)), here I am going to show the pseudocode using DFS:
Parameter Definition:
* G -> Graph
* S -> Starting node
* N -> Number of connected (highest cost) vertices to find
* Cost -> Array of size V, contains the vertex cost value
procedure DFS-traversal(G,S,N,Cost):
let St be a stack
let Q be a min-priority-queue contains <cost, vertex-id>
let discovered is an array (of size V) to mark already visited vertices
St.push(S)
// Comment: if you do not want to consider the case "S is connected to S"
// then, you can consider commenting the following line
Q.push(make-pair(S, Cost[S]))
label S as discovered
while St is not empty
v = St.pop()
for all edges from v to w in G.adjacentEdges(v) do
if w is not labeled as discovered:
label w as discovered
St.push(w)
Q.push(make-pair(w, Cost[w]))
if Q.size() == N + 1:
Q.pop()
let ret is a N sized array
while Q is not empty:
ret.append(Q.top().second)
Q.pop()
Let's first describe the process first. Here, I run the iterative version of DFS to traverse the graph starting from S. During the traversal, I use a priority-queue to keep the N highest cost vertices that is reachable from S. Instead of the priority-queue, we can use a simple array (or even we can reuse the discovered array) to keep the record of the reachable vertices with cost.
Analysis of space-complexity:
To store the graph: O(E)
Priority-queue: O(N)
Stack: O(V)
For labeling discovered: O(V)
So, as O(E) is the dominating term here, we can consider O(E) as the overall space complexity.
Analysis of time-complexity:
DFS-traversal: O(V+E)
To track N highest cost vertices:
By maintaining priority-queue: O(V*logN)
Or alternatively using array: O(V*logV)
The overall time-complexity would be: O(V*logN + E) or O(V*logV + E)

Pairs of vertices in graph having specific distance

Given a tree with N vertices and a positive number K. Find the number of distinct pairs of the vertices which have a distance of exactly K between them. Note that pairs (v, u) and (u, v) are considered to be the same pair (1 ≤ N ≤ 50000, 1 ≤ K ≤ 500).
I am not able to find an optimum solution for this. I can do BFS from each vertex and count the no of vertices that is reachable from that and having distance less than or equal to K. But then in worst case the complexity will be order of 2. Is there any faster way around??
You can achieve that in more simple way.
Run DFS on tree and for each vertex calculate the distance from the root - save those in array (access by o(1)).
For each pair of vertex in your graph:
Find their LCA (Lowest common ancestor there are algorithm to do that in 0(1)).
Assume u and v are 2 arbitrary vertices and w is their LCA -> subtract the distance from the w to the root from u to the root - now you have the distance between u and w. Do the same for v -> with o(1) you got the distance for (v,w) and (u,w) -> sum them together and you get the (v,u) distance - now all you have to do is compare to K.
Final complexity is o(n^2)
Improving upon the other answer's approach, we can make some key observations.
To calculate distances between two nodes you need their LCA(Lowest Common Ancestor) and depths as the other answer is trying to do. The formula used here is:
Dist(u, v) = depth[u] + depth[v] - 2 * depth[ lca(u, v) ]
Depth[x] denotes distance of x from root, precomputed using DFS once starting from root node.
Now here comes the key observation, you already have distance value K, assume that dist(u, v) = K using this assumption calculate(predict?) depth of LCA. By putting K in above formula we get:
depth[ lca(u, v) ] = (depth[u] + depth[v] - K) / 2
Now that you have depth of LCA you know that distance between u and lca is depth[u] - depth[ lca(u, v) ] and between v and lca is depth[v] - depth[ lca(u, v) ], let this be X and Y respectively.
Now we know that LCA is the lowest common ancestor thus, the Xth parent of u and Yth parent of v should be the LCA, so now if Xth parent of u and Yth parent of v is indeed the same node then we can say that our pre-assumption about distances between the nodes was true and the distance between the two nodes is K.
You can caluculate the Xth and Yth ancestor of the nodes in O(logN) complexity using Binary Lifting Algorithm with a preprocessing of O(NLogN) time, this preprocessing can be included directly in your DFS when a node is visited for the first time.
Corner Cases:
Calcuated depth of LCA should not be a fraction or negative.
If depth of any node u or v matches the calculated depth of the node then that node is the ancestor of the other node.
Consider this tree:
Assuming K = 4, we get that depth[lca] = 1 using the formula above, and if we get the Xth and Yth ancestor of u and v we will get the same node 1, which should validate our assumption but this is not true since the distance between u and v is actually 2 as visible in the picture above. This is because LCA in this case is actually 2, to handle this case calcuate X-1th and Y-1th ancestor of u and v too, respectively and check if they are different.
Final Complexity: O(NlogN)

How to count all reachable nodes in a directed graph?

There is a directed graph (which might contain cycles), and each node has a value on it, how could we get the sum of reachable value for each node. For example, in the following graph:
the reachable sum for node 1 is: 2 + 3 + 4 + 5 + 6 + 7 = 27
the reachable sum for node 2 is: 4 + 5 + 6 + 7 = 22
.....
My solution: To get the sum for all nodes, I think the time complexity is O(n + m), the n is the number of nodes, and m stands for the number of edges. DFS should be used,for each node we should use a method recursively to find its sub node, and save the sum of sub node when finishing the calculation for it, so that in the future we don't need to calculate it again. A set is needed to be created for each node to avoid endless calculation caused by loop.
Does it work? I don't think it is elegant enough, especially many sets have to be created. Is there any better solution? Thanks.
This can be done by first finding Strongly Connected Components (SCC), which can be done in O(|V|+|E|). Then, build a new graph, G', for the SCCs (each SCC is a node in the graph), where each node has value which is the sum of the nodes in that SCC.
Formally,
G' = (V',E')
Where V' = {U1, U2, ..., Uk | U_i is a SCC of the graph G}
E' = {(U_i,U_j) | there is node u_i in U_i and u_j in U_j such that (u_i,u_j) is in E }
Then, this graph (G') is a DAG, and the question becomes simpler, and seems to be a variant of question linked in comments.
EDIT previous answer (striked out) is a mistake from this point, editing with a new answer. Sorry about that.
Now, a DFS can be used from each node to find the sum of values:
DFS(v):
if v.visited:
return 0
if v is leaf:
return v.value
v.visited = true
return sum([DFS(u) for u in v.children])
This is O(V^2 + VE) worst vase, but since the graph has less nodes, V
and E are now significantly lower.
Some local optimizations can be made, for example, if a node has a single child, you can reuse the pre-calculated value and not apply DFS on the child again, since there is no fear of counting twice in this case.
A DP solution for this problem (DAG) can be:
D[i] = value(i) + sum {D[j] | (i,j) is an edge in G' }
This can be calculated in linear time (after topological sort of the DAG).
Pseudo code:
Find SCCs
Build G'
Topological sort G'
Find D[i] for each node in G'
apply value for all node u_i in U_i, for each U_i.
Total time is O(|V|+|E|).
You can use DFS or BFS algorithms for solving Your problem.
Both have complexity O(V + E)
You dont have to count all values for all nodes. And you dont need recursion.
Just make something like this.
Typically DFS looks like this.
unmark all vertices
choose some starting vertex x
mark x
list L = x
while L nonempty
choose some vertex v from front of list
visit v
for each unmarked neighbor w
mark w
add it to end of list
In Your case You have to add some lines
unmark all vertices
choose some starting vertex x
mark x
list L = x
float sum = 0
while L nonempty
choose some vertex v from front of list
visit v
sum += v->value
for each unmarked neighbor w
mark w
add it to end of list

Dijkstra’s algorithm to compute the shortest paths from a given source vertex s in O ((V+E) log W) time

G (V, E) is a weighted, directed graph with non negative weight function W : E -> {0, 1, 2, 3, 4... W } where W is any non negative integer. I want to modify the Dijkstra’s algorithm to compute the shortest paths from a given source vertex s in O ((V+E) log W) time.
Let's take a standard Dijkstra's algorithm with a priority queue and change it a little bit:
We'll have a map from an int (a distance) to a vector to keep all vertices with the given distance.
We'll pop the element from the first vector to get the current vertex at each iteration and delete a key if the vector becomes empty.
We'll push an element to a corresponding vector when we add it to the queue.
There are at most W + 1 different keys in the map at any point. Why? Let v be the current vertex and d[v] be its distance. All keys less than d[v] were deleted. Any undiscovered vertex is not in the map. For any discovered vertex u d[u] <= d[v] + max_edge_lenght = d[v] + W. Thus, any key in the map must be in the [d[v], d[v] + W] range.
The size of the map is O(W) so every operation with works in O(log W) time (pushing/popping an element from the vector is O(1)).
Of course, it's useful only as long as W is relatively small (otherwise, you can go with a standard O((V + E) log V) implementation).

Given an undirected graph G = (V, E), determine whether G is a complete graph

I'm pretty sure this problem is P and not NP, but I'm having difficulty coming up with a polynomially bound algorithm to solve it.
You can :
check that number of edges in the graph is n(n-1)/2.
check that each vertice is connected to exaclty n-1 distinct vertices.
This will run in O(V²), which is polynomial.
Hope it helped.
Here's an O(|E|) algorithm that also has a small constant.
It's trivial to enumerate every edge in a complete graph. So all you need to do is scan your edge list and verify that every such edge exists.
For each edge (i, j), let f(i, j) = i*|V| + j. Assuming vertices are numbered 0 to |V|-1.
Let bitvec be a bit vector of length |V|2, initialized to 0.
For each edge (i, j), set bitvec[f(i, j)] = 1.
G is a complete graph if and only if every element of bitvec == 1.
This algorithm not only touches E once, but it's also completely vectorizable if you have a scatter instruction. That also means it's trivial to parallelize.
Here is an O(E) algorithm:
Use O(E) as it is input time, to scan the graph
Meanwhile, record each vertex p's degree, increase degree only if the neighbor is not p itself (self-connecting edge) and is not a vertex q where p and q has another edge counted already (multiple edge), these checking can be done in O(1)
Check if all vertex's degree is |V|-1, this step is O(V), if Yes then it is a complete graph
Total is O(E)
For a given graph G = (V,E), check for each pair u, v in the V, and see if edge (u,v) is in E.
The total number of u, v pairs are |V|*(|V|-1)/2. As a result, with a time complexity of O(|V|^2), you can check and see if a graph is complete or not.

Resources