Reference the invoking object in the passed block in Ruby - ruby

Is there any way to get hold of the invoked object inside the block thats being called. For instance, is there any way for the blocks to get access to the scope of the method batman or the class SuperHeros
class SuperHeros
attr_accessor :news
def initialize
#news = []
end
def batman task
puts "Batman: #{task} - done"
yield "feed cat"
#news << task
end
end
cat_woman = lambda do |task|
puts "Cat Woman: #{task} - done"
# invoker.news << task
end
robin = lambda do |task|
puts "Robin: #{task} - done"
# invoker.news << task
end
characters = SuperHeros.new
characters.batman("kick Joker's ass", &cat_woman)
characters.batman("break Bane's bones", &robin)

You can use something similar to Instance eval with delegation pattern, used - for example - in Savon gem:
def batman(task, &block)
#original_self = eval('self', block.binding)
puts "Batman: #{task} - done"
instance_exec('feed cat', &block)
#news << task
end
private
def method_missing(method, *args, &block)
if #original_self
#original_self.send(method, *args, &block)
else
super
end
end
In this approach, when you call method (with implicit receiver) inside block passed into batman method, it's called in the context of SuperHeros instance. If there is no such method available, the call goes (through method_missing) to original block self.

The simplest way to get the receiver object inside a block is assigning the object to an instance variable.
This example illustrate more clearly how the lambdas cat_woman and robin can access to attributes of the receiver objects of blocks:
class SuperHeros
attr_accessor :news, :name, :current_task
def initialize(a_name)
#name = a_name
#news = []
end
def batman(task)
puts "Inside the method batman of #{name}: #{task} in progress ..."
#current_task = task
yield
#news << task
end
end
cat_woman = lambda do |extra_task|
puts "cat_woman even #{extra_task} before doing #{#caller_obj.current_task}"
puts "Cat Woman: #{#caller_obj.current_task} - done by #{#caller_obj.name}"
# invoker.news << task
end
robin = lambda do |extra_task|
puts "robin even #{extra_task} before doing #{#caller_obj.current_task}"
puts "Robin: #{#caller_obj.current_task} - done by #{#caller_obj.name}"
end
character_1 = SuperHeros.new('batman_1')
(#caller_obj = character_1).batman("kick Joker's ass") { cat_woman['eats some burger'] }
puts
character_2 = SuperHeros.new('batman_2')
(#caller_obj = character_2).batman("break Bane's bones") { robin['drinks some beer'] }
The output will be:
Inside the method batman of batman_1: kick Joker's ass in progress ...
cat_woman even eats some burger before doing kick Joker's ass
Cat Woman: kick Joker's ass - done by batman_1
Inside the method batman of batman_2: break Bane's bones in progress ...
robin even drinks some beer before doing break Bane's bones
Robin: break Bane's bones - done by batman_2

Related

How to "magically" add code to all public class methods in ruby?

I would like to be able to insert some code at the beginning and at the end of methods in my class. I would like to avoid repetition as well.
I found this answer helpful, however it doesn't help with the repetition.
class MyClass
def initialize
[:a, :b].each{ |method| add_code(method) }
end
def a
sleep 1
"returning from a"
end
def b
sleep 1
"returning from b"
end
private
def elapsed
start = Process.clock_gettime(Process::CLOCK_MONOTONIC)
block_value = yield
finish = Process.clock_gettime(Process::CLOCK_MONOTONIC)
puts "elapsed: #{finish - start} seconds, block_value: #{block_value}."
block_value
end
def add_code(meth)
meth = meth.to_sym
self.singleton_class.send(:alias_method, "old_#{meth}".to_sym, meth)
self.singleton_class.send(:define_method, meth) do
elapsed do
send("old_#{meth}".to_sym)
end
end
end
end
The above does work, but what would be a more elegant solution? I would love to be able to, for example, put attr_add_code at the beginning of the class definition and list the methods I want the code added to, or perhaps even specify that I want it added to all public methods.
Note: The self.singleton_class is just a workaround since I am adding code during the initialisation.
If by repetition you mean the listing of methods you want to instrument, then you can do something like:
module Measure
def self.prepended(base)
method_names = base.instance_methods(false)
base.instance_eval do
method_names.each do |method_name|
alias_method "__#{method_name}_without_timing", method_name
define_method(method_name) do
t1 = Process.clock_gettime(Process::CLOCK_MONOTONIC)
public_send("__#{method_name}_without_timing")
t2 = Process.clock_gettime(Process::CLOCK_MONOTONIC)
puts "Method #{method_name} took #{t2 - t1}"
end
end
end
end
end
class Foo
def a
puts "a"
sleep(1)
end
def b
puts "b"
sleep(2)
end
end
Foo.prepend(Measure)
foo = Foo.new
foo.a
foo.b
# => a
# => Method a took 1.0052679998334497
# => b
# => Method b took 2.0026899999938905
Main change is that i use prepend and inside the prepended callback you can find the list of methods defined on the class with instance_methods(false), the falseparameter indicating that ancestors should not be considered.
Instead of using method aliasing, which in my opinion is something of the past since the introduction of Module#prepend, we can prepend an anonymous module that has a method for each instance method of the class to be measured. This will cause calling MyClass#a to invoke the method in this anonymous module, which measures the time and simply resorts to super to invoke the actual MyClass#a implementation.
def measure(klass)
mod = Module.new do
klass.instance_methods(false).each do |method|
define_method(method) do |*args, &blk|
start = Process.clock_gettime(Process::CLOCK_MONOTONIC)
value = super(*args, &blk)
finish = Process.clock_gettime(Process::CLOCK_MONOTONIC)
puts "elapsed: #{finish - start} seconds, value: #{value}."
value
end
end
end
klass.prepend(mod)
end
Alternatively, you can use class_eval, which is also faster and allows you to just call super without specifying any arguments to forward all arguments from the method call, which isn't possible with define_method.
def measure(klass)
mod = Module.new do
klass.instance_methods(false).each do |method|
class_eval <<-CODE, __FILE__, __LINE__ + 1
def #{method}(*)
start = Process.clock_gettime(Process::CLOCK_MONOTONIC)
value = super
finish = Process.clock_gettime(Process::CLOCK_MONOTONIC)
puts "elapsed: \#{finish - start} seconds, value: \#{value}."
value
end
CODE
end
end
klass.prepend(mod)
end
To use this, simply do:
measure(MyClass)
It looks like you're trying to do some benchmarking. Have you checked out the benchmark library? It's in the standard library.
require 'benchmark'
puts Benchmark.measure { MyClass.new.a }
puts Benchmark.measure { MyClass.new.b }
Another possibility would be to create a wrapper class like so:
class Measure < BasicObject
def initialize(target)
#target = target
end
def method_missing(name, *args)
t1 = ::Process.clock_gettime(::Process::CLOCK_MONOTONIC)
target.public_send(name, *args)
t2 = ::Process.clock_gettime(::Process::CLOCK_MONOTONIC)
::Kernel.puts "Method #{name} took #{t2 - t1}"
end
def respond_to_missing?(*args)
target.respond_to?(*args)
end
private
attr_reader :target
end
foo = Measure.new(Foo.new)
foo.a
foo.b

How do I attach an observer to a method without adding code to the method itself?

I'm trying to figure out a way to have a method trigger another method by creating a new Listener class. I'd really like the code to be simplified and not involve adding anything specific to the callback method or the trigger method. Basically, what I'm trying to do is this:
def level_up
level += 1
end
def print_level
puts "Level Up! (#{level})"
end
notify_level = Listener.new(:level_up, :print_level);
What my Listener class is (right now) is this:
# Listener.new(attached_to, callbacks)
class Listener
def initialize(attached_to, function)
#owner, #callback = attached_to, function
end
def owner
#owner
end
def callback
#callback
end
def trigger
# execute callback manually
self.method(#owner).call
self.method(#callback).call
end
end
In order to call both, I need to execute notify_level.trigger itself, but what I want is to execute level_up and call print_level. I know someone will mention something about observers, but I need more than just that. I want to hold fast to DRY. Manually adding observers and listeners to every single method is just terrible, especially since I can't add or remove them with ease.
Personally I'm not a big fan of this pattern but this is kind of a fun question so here is my solution. Should work in Ruby 1.9 and greater.
module MethodListener
##observed_methods = {}
def method_added(method)
alias_name = "__#{method}_orig"
return if method_defined?(alias_name) || method.match(/__.*_orig/)
alias_method alias_name, method
define_method(method) do |*args|
ret = send(alias_name, *args)
(##observed_methods[method] || []).each {|callback| send(callback)}
ret
end
end
def listen(owner, callback)
(##observed_methods[owner] ||= []) << callback
end
end
Usage example:
class A
extend MethodListener
def b(a,b)
puts "b #{a} #{b}"
true
end
def c
puts 'c'
end
listen :b, :c
end
A.new.b(1,2) # => true
# Prints:
# b 1 2
# c
I changed my original code to be more semantic and so it would make more sense.
class Event
def initialize(event, callback_array = [])
if callback_array.kind_of? Array
#callbacks = callback_array
else
#callbacks = [callback_array]
end
#event = event
end
def trigger(*args)
self.method(#event).call *args
#callbacks.each{ |callback|
if callback.instance_of? Event
callback.trigger *args
else
method(callback).call *args
end
}
end
def add(callback)
#callbacks.push callback
end
def remove(callback)
#callbacks.delete_at(#callbacks.index(callback) || #callbacks.length)
end
def event_name
#event
end
end
Usage:
$infinite_break = 10
def infinite_loop_a(type)
puts "#{$infinite_break} points of #{type} damage taken"
$infinite_break -= 1
if $infinite_break > 0
$infinite.trigger(type)
else
$infinite.remove(:infinite_loop_a)
end
end
def infinite_loop_b(type)
puts "player is dealing #{$infinite_break} damage"
end
$infinite = Event.new(:infinite_loop_b, :infinite_loop_a)
$infinite.trigger('fire')
Also, I know I'm calling the infinite_loop_b inside infinite_loop_a, but that's for a specific reason. The Event instances can have another Event as a callback.

Ruby: automatically wrapping methods in event triggers

Heres what I have/want:
module Observable
def observers; #observers; end
def trigger(event, *args)
good = true
return good unless (#observers ||= {})[event]
#obersvers[event].each { |e| good = false and break unless e.call(self, args) }
good
end
def on(event, &block)
#obersvers ||= {}
#obersvers[event] ||= []
#observers[event] << block
end
end
class Item < Thing
include Observable
def pickup(pickuper)
return unless trigger(:before_pick_up, pickuper)
pickuper.add_to_pocket self
trigger(:after_pick_up, pickuper)
end
def drop(droper)
return unless trigger(:before_drop, droper)
droper.remove_from_pocket self
trigger(:after_drop, droper)
end
# Lots of other methods
end
# How it all should work
Item.new.on(:before_pickup) do |item, pickuper|
puts "Hey #{pickuper} thats my #{item}"
return false # The pickuper never picks up the object
end
While starting on trying to create a game in Ruby, I thought it would be great if it could be based all around Observers and Events. The problem is have to write all of these triggers seems to be a waste, as it seems like a lot of duplicated code. I feel there must be some meta programming method out there to wrap methods with functionality.
Ideal Sceanrio:
class CustomBaseObject
class << self
### Replace with correct meta magic
def public_method_called(name, *args, &block)
return unless trigger(:before_+name.to_sym, args)
yield block
trigger(:after_+name.to_sym, args)
end
###
end
end
And then I have all of my object inherit from this Class.
I'm still new to Ruby's more advanced meta programming subjects, so any knowledge about this type of thing would be awesome.
There are a several ways to do it with the help of metaprogramming magic. For example, you can define a method like this:
def override_public_methods(c)
c.instance_methods(false).each do |m|
m = m.to_sym
c.class_eval %Q{
alias #{m}_original #{m}
def #{m}(*args, &block)
puts "Foo"
result = #{m}_original(*args, &block)
puts "Bar"
result
end
}
end
end
class CustomBaseObject
def test(a, &block)
puts "Test: #{a}"
yield
end
end
override_public_methods(CustomBaseObject)
foo = CustomBaseObject.new
foo.test(2) { puts 'Block!' }
# => Foo
Test: 2
Block!
Bar
In this case, you figure out all the required methods defined in the class by using instance_methods and then override them.
Another way is to use so-called 'hook' methods:
module Overrideable
def self.included(c)
c.instance_methods(false).each do |m|
m = m.to_sym
c.class_eval %Q{
alias #{m}_original #{m}
def #{m}(*args, &block)
puts "Foo"
result = #{m}_original(*args, &block)
puts "Bar"
result
end
}
end
end
end
class CustomBaseObject
def test(a, &block)
puts "Test: #{a}"
yield
end
include Overrideable
end
The included hook, defined in this module, is called when you include that module. This requires that you include the module at the end of the class definition, because included should know about all the already defined methods. I think it's rather ugly :)

How do I run code before and after a method in a sub class?

My first thoughts are some thing like this:
class AbstractBuilder
attr_reader :time_taken
def build_with_timer
started_at = Time.now
build
#time_taken = Time.now - started_at
end
def build
raise 'Implement this method in a subclass'
end
end
class MyBuilder < AbstractBuilder
def build
sleep(5)
end
end
builder = MyBuilder.new.build_with_timer
puts builder.time_taken
I would suspect there is a better way which offers better flexibility, for example ideally I'd like to call 'build' on an instance of MyBuilder instead of 'build_with_timer' and always have the execution time recorded.
I did consider using alias_method from initialize or even using a module mixin instead of class inheritance which would override the build method calling super in the middle (not sure if that would work). Before I go down the rabbit hole I thought I'd see if there is an established practice.
I had a stab at a version to achieve what you want. This version doesn't require the subclass to have any extra code either.
class AbstractBuilder
##disable_override = false
def before_method
puts "before"
end
def after_method
puts "after"
end
def self.method_added name
unless ##disable_override
if name == :build
##disable_override = true # to stop the new build method
self.send :alias_method, :sub_build, :build
self.send :remove_method, :build
self.send :define_method, :build do
before_method
sub_build
after_method
end
##disable_override = false
else
puts "defining other method #{name}"
end
end
end
end
class MyBuilder < AbstractBuilder
def build
puts "starting build"
sleep(5)
puts "built."
end
def unnaffected_method
# this method won't get redefined
end
end
b = MyBuilder.new
b.build
Outputs
defining other method unnaffected_method
before
starting build
built.
after
I'd play with alias_method:
module Timeable
def time_methods *meths
meths.each do |meth|
alias_method "old_#{meth}", meth
define_method meth do |*args|
started_at = Time.now
res = send "old_#{meth}", *args
puts "Execution took %f seconds" % (Time.now - started_at)
res
end
end
end
end
class Foo
def bar str
puts str
end
end
Foo.extend Timeable
Foo.time_methods :bar
Foo.new.bar('asd')
#=>asd
#=>Execution took 0.000050 seconds
Sounds like you're looking for hooks into object lifecycle events. You'll have to build this into your base object and provide a little DSL -- I'm thinking you're after something like ActiveRecord Callbacks. Here's how we might modify your example to allow something like that:
class AbstractBuilder
attr_reader :time_taken
def construct! # i.e., build, and also call your hooks
##prebuild.each { |sym| self.send(sym) }
build
##postbuild.each { |sym| self.send(sym) }
end
def construct_with_timer
started_at = Time.now
construct!
#time_taken = Time.now - started_at
puts "!!! Build time: ##time_taken"
end
class << self
def before_build(fn); ##prebuild ||= []; ##prebuild << fn; end
def after_build(fn); ##postbuild ||= []; ##postbuild << fn; end
end
end
class MyBuilder < AbstractBuilder
before_build :preprocess
after_build :postprocess
def build; puts "BUILDING"; sleep(3); end
def preprocess; puts "Preparing to build..."; end
def postprocess; puts "Done building. Thank you for waiting."; end
end
builder = MyBuilder.new
builder.construct_with_timer
# => Preparing to build...
# => BUILDING
# => Done building. Thank you for waiting.
# => !!! Build time: 3.000119
This is a textbook-definition use case for Aspect-Oriented Programming. It generally offers a cleaner separation of concerns. In this arena, Ruby offers Aquarium and AspectR. However, you may not want to add another dependency to your project. As such, you might still consider using one of the other approaches.

Cross-cutting logging in Ruby

I'm trying to add logging to a method from the outside (Aspect-oriented-style)
class A
def test
puts "I'm Doing something..."
end
end
class A # with logging!
alias_method :test_orig, :test
def test
puts "Log Message!"
test_orig
end
end
a = A.new
a.test
The above works alright, except that if I ever needed to do alias the method again, it goes into an infinite loop. I want something more like super, where I could extend it as many times as I needed, and each extension with alias its parent.
Another alternative is to use unbound methods:
class A
original_test = instance_method(:test)
define_method(:test) do
puts "Log Message!"
original_test.bind(self).call
end
end
class A
original_test = instance_method(:test)
counter = 0
define_method(:test) do
counter += 1
puts "Counter = #{counter}"
original_test.bind(self).call
end
end
irb> A.new.test
Counter = 1
Log Message!
#=> #....
irb> A.new.test
Counter = 2
Log Message!
#=> #.....
This has the advantage that it doesn't pollute the namespace with additional method names, and is fairly easily abstracted, if you want to make a class method add_logging or what have you.
class Module
def add_logging(*method_names)
method_names.each do |method_name|
original_method = instance_method(method_name)
define_method(method_name) do |*args,&blk|
puts "logging #{method_name}"
original_method.bind(self).call(*args,&blk)
end
end
end
end
class A
add_logging :test
end
Or, if you wanted to be able to do a bunch of aspects w/o a lot of boiler plate, you could write a method that writes aspect-adding methods!
class Module
def self.define_aspect(aspect_name, &definition)
define_method(:"add_#{aspect_name}") do |*method_names|
method_names.each do |method_name|
original_method = instance_method(method_name)
define_method(method_name, &(definition[method_name, original_method]))
end
end
end
# make an add_logging method
define_aspect :logging do |method_name, original_method|
lambda do |*args, &blk|
puts "Logging #{method_name}"
original_method.bind(self).call(*args, &blk)
end
end
# make an add_counting method
global_counter = 0
define_aspect :counting do |method_name, original_method|
local_counter = 0
lambda do |*args, &blk|
global_counter += 1
local_counter += 1
puts "Counters: global##{global_counter}, local##{local_counter}"
original_method.bind(self).call(*args, &blk)
end
end
end
class A
def test
puts "I'm Doing something..."
end
def test1
puts "I'm Doing something once..."
end
def test2
puts "I'm Doing something twice..."
puts "I'm Doing something twice..."
end
def test3
puts "I'm Doing something thrice..."
puts "I'm Doing something thrice..."
puts "I'm Doing something thrice..."
end
def other_tests
puts "I'm Doing something else..."
end
add_logging :test, :test2, :test3
add_counting :other_tests, :test1, :test3
end
First choice: subclass instead of overriding:
class AWithLogging < A\
def test
puts "Log Message!"
super
end
end
Second choice: name your orig methods more carefully:
class A # with logging!
alias_method :test_without_logging, :test
def test
puts "Log Message!"
test_without_logging
end
end
Then another aspect uses a different orig name:
class A # with frobnication!
alias_method :test_without_frobnication, :test
def test
Frobnitz.frobnicate(self)
test_without_frobnication
end
end

Resources