Use one instance of AsyncTask throughout Activity - android-asynctask

I have a number of AsyncTask set up as individual classes. I reuse them throughout my app. I wonder, in places where the same AsyncTask may be needed more than one is it possible to use one instance of that custom AsyncTask class multiple times? This is really a cosmetic problem since it bothers me having redundant sections of code, especially when an AsyncTask uses a callback to communicate with it's starting activity.
I've tried to do it this way -
MyTask task = new MyTask(new someCallBackListener){
#Override
public void taskDone(boolean youDone){
}
});
And then in my activity just calling
task.execute(params);
This seems to work the first time, but I cannot execute it more than once. Do I really just need to initialize a new task each time I want to use it?

An asynctask can be executed only once as per the android documentation here(section Threading rules)which says
The task can be executed only once (an exception will be thrown if a
second execution is attempted.)
So its not possible to reuse an AsyncTask instance. Further this SO link would help you!

While you can't use twice the same instance I think you could reuse the callback implementation by creating the instance this way
new MyTask(this).execute(params);
and implementing the callback in the Activity or the Fragment like this
public class SomeActivity extends Activity implements MyTask.someCallBackListener {
//All the Activity code
public void taskDone(boolean youDone) {
}
}
This way, you can create multiple instances of your AsyncTask without those redundant sections of code that bother you.

Related

Xamarin Async Constructor

For my application I need to fetch some data asynchronously and do some initialization for each page. Unfortunately, a constructor does not allow me to make asynchronous calls. I followed this article and put all of my code into the OnAppearing method. However, since then I ran into multiple issues since each platform handles the event a little bit differently. For example, I have pages where you can take pictures, on iOS the OnAppearing is called again every time after the camera is closed while Android doesn't. It doesn't seem like a reliable method for my needs, which is also described here:
Calls to the OnDisappearing and OnAppearing overrides cannot be treated as guaranteed indications of page navigation. For example, on iOS, the OnDisappearing override is called on the active page when the application terminates.
I am searching for a method/way where I can perform my own initialization. The constructor would be perfect for that but I cannot perform anything asynchronously in there. Please do not provide me with any work arounds, I am searching for a solution that is the "recommended" way or maybe someone with a lot of experience can tell me what they are doing. (I also don't want to .Wait() or .Result as it will lock my app)
You can use Stephen Cleary's excellent NotifyTaskCompletion class.
You can read more how it works and what to do/don't in these cases in Microsoft's excellent Async Programming : Patterns for Asynchronous MVVM Applications: Data Binding. The highlights of this topics are:
Let’s walk through the core method
NotifyTaskCompletion.WatchTaskAsync. This method takes a task
representing the asynchronous operation, and (asynchronously) waits
for it to complete. Note that the await does not use
ConfigureAwait(false); I want to return to the UI context before
raising the PropertyChanged notifications. This method violates a
common coding guideline here: It has an empty general catch clause. In
this case, though, that’s exactly what I want. I don’t want to
propagate exceptions directly back to the main UI loop; I want to
capture any exceptions and set properties so that the error handling
is done via data binding. When the task completes, the type raises
PropertyChanged notifications for all the appropriate properties.
A sample usage of it:
public class MainViewModel
{
public MainViewModel()
{
UrlByteCount = new NotifyTaskCompletion<int>(
MyStaticService.CountBytesInUrlAsync("http://www.example.com"));
}
public NotifyTaskCompletion<int> UrlByteCount { get; private set; }
}
Here, the demo is about binding the returned asynchronous value to some bindable property, but of course you can you is without any return value (for simple data loading).
This may be too simple to say, but you CAN run asynchronous tasks in the constructor. Just wrap it in an anonymous Task.
public MyConstructor() {
Task.Run(async () => {
<Your code>
}
}
Be careful when doing this though as you can get into resource conflict issues if you accidentally open the page twice.
Another thing I like to do is use an _isInit flag, which indicates a first time use, and then never again.

For a Xamarin Forms application how should I decide what goes in the App constructor or the OnStart()?

Here's the code that I have:
public App()
{
InitializeComponent();
DB.CreateTables();
DB.GetSettings();
DB.PopulateTables();
SetResourceColors();
SetResourceDimensions();
MainPage = new MainPage();
activity = Helpers.Activity.Create();
VersionTracking.Track();
DeviceDisplay.MainDisplayInfoChanged += OnMainDisplayInfoChanged;
}
protected override void OnStart()
{
}
Can someone explain to me. Is there any difference between me placing the code such as I have in the constructor or in the OnStart() method? What's the normal way to do this?
I have been working with Xamarin.Forms for a long time now and this is how I and my fellow developers use the OnStart Method.
If you check the Microsoft documents it says the following about it :
OnStart - Called when the application starts.
So, first of all, you should know that there is no specific use of the OnStart method, to be very honest there is no major difference in between using the constructor or this lifecycle method because both get called on XF framework startup, first the constructor then the OnStart method.
Now let's come to the differences.
As Jason pointed out, the OnStart method is a lifecycle method and hence has a return type unlike the constructor, so you can even call an asynchronous piece of code in the OnStart method but you cannot do the same in the constructor as constructors cannot be asynchronous.
Which means if you have the below method:
public async Task<bool> IsSomeThingWorkingAsync(//SomeParams)
{
// Code
}
Now, this method cannot be asynchronously called from the constructor since constructors are forcefully synchronous and have no return types. But if you try doing that from the on start method it's quite easy and it will work. In this case, you use the OnStart method. Something like below:
protected override async void OnStart()
{
bool WasWorkSuccess=await IsSomeThingWorkingAsync();
//do something with the boolean
}
A constructor is intended to be used for wiring. In the constructor, you want to avoid doing actual work. You basically prepare the class to be used. Methods are intended to do actual work.
Note: There are no performance gains whatsoever by choosing one over the other - it's really a matter of preference and standard.
Please go through the details here
You can write the initialisation codes in App() constructor. But you need to be very careful abut registering events.
Reason is,
For example in Android, If the app is launched and it is in task list and if you try to launch the app again by clicking on app icon. The constructor of App() will call again. This will register the event multiple times and will create issues.
So for events I will suggest you to use overriden methods for registering events.
Again as Jason pointed it out, It is your personal preference where to write your code.

Room void methods on main thread

When using the Room library for Android the documentation clearly states that we cannot make calls on the main thread unless we specifically allow them. What I'm curious about is methods that have a void return type. It seems silly that returning LiveData will automatically run them off the main thread, but void types will not (unless I'm missing something). Is there any easy way I can do this without having to run this in my own managed thread?
My Query:
#Dao
interface UserDao {
#Query("DELETE FROM users")
fun clear()
}
I've even tried using Kotlin reflection + extension functions, but this seemed to fail during runtime:
fun KFunction<Unit>.execOn(executor: Executor, vararg args: Any?) {
executor.execute {
this.call(args)
}
}
Then make a call like:
myDb.userDao()::clear.execOn(diskExecutor)
Note what does work is:
diskExecutor.execute {
myDb.userDao().clear()
}
It seems silly that returning LiveData will automatically run them off the main thread, but void types will not (unless I'm missing something).
Without some sort of annotation, Room would have no idea that you want a void-returning DAO method to be run on a background thread. With a reactive return type (e.g., LiveData, Single), you are explicitly requesting background execution, so no additional metadata (e.g., an annotation) is required.
You might consider filing a feature request for such an annotation-based approach.
Is there any easy way I can do this without having to run this in my own managed thread?
If you are asking "does Room have a background-execution option for DAO methods other than those with reactive return types?", then the answer is no, at least at the present time.

Java need advices

Im designing a small library and sometimes i write a couple lines and it just doesn't feel right, so i'd like to get the opinions/advices of an experimented java programmer.
Ive got a listener which handle 3 differents events and in one of my class I implement the methods that will actually fire the events
So what i did at first was something like this:
protected final void fireOperationStarted(){
OperationEvent event = new OperationEvent(this);
for (OperationListener listener : listeners) {
listener.operationStarted(event);
}
}
protected final void fireOperationEnded(){
OperationEvent event = new OperationEvent(this);
for (OperationListener listener : listeners) {
listener.operationEnded(event);
}
//omitted the 3rd method on purpose
but this code felt wrong because if someone want to implement their own event, they will basically need access to the whole listener arraylist (CopyOnWriteArraylist) and write the logic again and again.
So what i opted for is a Fireable interface with a single method "fire". And this is what i've done:
protected final void fireOperationStarted(){
fireOperation(new Fireable(){
#Override
public void fire(OperationListener listener, OperationEvent event) {
listener.operationStarted(event);
}
});
}
protected final void fireOperationEnded(){
fireOperation(new Fireable(){
#Override
public void fire(OperationListener listener, OperationEvent event) {
listener.operationEnded(event);
}
});
}
protected void fireOperation(Fireable fireable){
OperationEvent event = new OperationEvent(this);
for (OperationListener listener : listeners) {
fireable.fire(listener, event);
}
}
I'd like to get your opinions, I personally think its better than the first implementation even there is still a lot of boilerplate code. Maybe there is a better way to do this ? I've looked in the java.awt.events package source code to see how they were dealing with multiple events and how they fire them, but it seem way too complicated for my needs.
One thing that i was wondering also is about the lambda expression in Java 8, if i use them without importing any Java 8 packages and i compile, will it work on the JRE7 ?
Could be great to use the JDK8 to make my codes cleaner eventually.
Thanks for your help !
I think your first example is better. listeners has got to be an instance field, and so readily available to everybody.
(You might have only one method in OperationListener and use a value in OperationEvent to determine which action is involved. Then your methods could all pass the proper event to one method that calls the one listener method.)
Your second idea is interesting, but for use inside one instance of one class, I think it's overkill.
There's all different kinds of ways to store listeners. If you're not adding and removing them too fast, ArrayList is good. If there's any chance of adding and removing them on different threads and you're calling the listeners frequently, CopyOnWriteArrayList is much better.
Don't worry too much about "boilerplate". Java tends to go with wordy-but-simple as regards low level code. The two for loops in your first example call out to be combined somehow, but it's not worth worrying about until you've got a lot more of them.
Lambdas will reduce your lines of code (if you use simple ones; my C# lambdas all end up running 20 lines or more; might as well be anonymous classes!), but they'll add plenty of pages to the language manual. However, lambdas aren't there till JRE 8.

Seemingly redundant event and event handlers

I will explain with an example. My GWT project has a Company module, which lets a user add, edit, delete, select and list companies.
Of these, the add, edit and delete operations lands back the user on the CompanyList page.
Thus, having three different events - CompanyAddedEvent, CompanyUpdatedEvent and CompanyDeletedEvent, and their respective event handlers - seems overkill to me, as there is absolutely not difference in their function.
Is it OK to let a single event manage the three operations?
One alternative I think is to use some event like CompanyListInvokedEvent. However, somewhere I think its not appropriate, is the event actually is not the list being invoked, but a company being added/updated/deleted.
If it had been only a single module, I would have get the task done with three separate events. But other 10 such modules are facing this dilemma. It means 10x3 = 30 event classes along with their 30 respective handlers. The number is large enough for me to reconsider.
What would be a good solution to this?
UPDATE -
#ColinAlworth's answer made me realize that I could easily use Generics instead of my stupid solution. The following code represents an event EntityUpdatedEvent, which would be raised whenever an entity is updated.
Event handler class -
public class EntityUpdatedEvent<T> extends GwtEvent<EntityUpdatedEventHandler<T>>{
private Type<EntityUpdatedEventHandler<T>> type;
private final String statusMessage;
public EntityUpdatedEvent(Type<EntityUpdatedEventHandler<T>> type, String statusMessage) {
this.statusMessage = statusMessage;
this.type = type;
}
public String getStatusMessage() {
return this.statusMessage;
}
#Override
public com.google.gwt.event.shared.GwtEvent.Type<EntityUpdatedEventHandler<T>> getAssociatedType() {
return this.type;
}
#Override
protected void dispatch(EntityUpdatedEventHandler<T> handler) {
handler.onEventRaised(this);
}
}
Event handler interface -
public interface EntityUpdatedEventHandler<T> extends EventHandler {
void onEventRaised(EntityUpdatedEvent<T> event);
}
Adding the handler to event bus -
eventBus.addHandler(CompanyEventHandlerTypes.CompanyUpdated, new EntityUpdatedEventHandler<Company>() {
#Override
public void onEventRaised(EntityUpdatedEvent<Company> event) {
History.newItem(CompanyToken.CompanyList.name());
Presenter presenter = new CompanyListPresenter(serviceBundle, eventBus, new CompanyListView(), event.getStatusMessage());
presenter.go(container);
}
});
Likewise, I have two other Added and Deleted generic events, thus eliminating entire redundancy from my event-related codebase.
Are there any suggestions on this solution?
P.S. > This discussion provides more insight on this problem.
To answer this question, let me first pose another way of thinking about this same kind of problem - instead of events, we'll just use methods.
In my tiered application, two modules communicate via an interface (notice that these methods are all void, so they are rather like events - the caller doesn't expect an answer back):
package com.acme.project;
public interface CompanyServiceInteface {
public void addCompany(CompanyDto company) throws AcmeBusinessLogicException;
public void updateCompany(CompanyDto company) throws AcmeBusinessLogicException;
public void deleteCompany(CompanyDto company) throws AcmeBusinessLogicException;
}
This seems like overkill to me - why not just reduce the size of this API to one method, and add an enum argument to simplify this. This way, when I build an alternative implementation or need to mock this in my unit tests, I just have one method to build instead of three. This gets to be clearly overkill when I make the rest of my application - why not just ObjectServiceInterface.modify(Object someDto, OperationEnum invocation); to work for all 10 modules?
One answer is that you might want want to drastically modify the implementation of one but not the others - now that you've reduced this to just one method, all of this belongs inside that switch case. Another is that once simplified in this way, the inclination often to further simplify - perhaps to combine create and update into just one method. Once this is done, all callsites must make sure to fulfill all possible details of that method's contract instead of just the one specific one.
If the receivers of those events are simple and will remain so, there may be no good reason to not just have a single ModelModifiedEvent that clearly is generic enough for all possible use cases - perhaps just wrapping the ID to request that all client modules refresh their view of that object. If a future use case arises where only one kind of event is important, now the event must change, as must all sites that cause the event to be created so that they properly populate this new field.
Java shops typically don't use Java because it is the prettiest language, or because it is the easiest language to write or find developers for, but because it is relatively easy to maintain and refactor. When designing an API, it is important to consider future needs, but also to think about what it will take to modify the current API - your IDE almost certainly has a shortcut key to find all invocations of a particular method or constructor, allowing you to easily find all places where that is used and update them. So consider what other use cases you expect, and how easily the rest of the codebase can be udpated.
Finally, don't forget about generics - for my example above, I would probably make a DtoServiceInterface to simplify matters, so that I just declare the one interface with three methods, and implement it and refer to it as needed. In the same way, you can make one set of three GwtEvent types (with *Handler interfaces and possibly Has*Handlers as well), but keep them generic for all possible types. Consider com.google.gwt.event.logical.shared.SelectionEvent<T> as an example here - in your case you would probably want to make the model object type a parameter so that handlers can check which type of event they are dealing with (remember that generics are erased in Java), or source from one EventBus for each model type.

Resources