alignment requirement for powerpc icbi and dcbf cache instructions - caching

I have inherited some PowerPC 750FX code. A handful of functions flush the instruction and data cache with
icbi 0,3 # instruction cache block invalidate
and
dcbf 0,3 # data cache block flush
respectively. The code makes sure the Register 3 contents is 32 byte aligned so it always points to the start of a cache line. I wonder if this is necessary. The PowerPC manual only talks about computing the effective address (EA) using the operands, but has nothing to say about alignment requirements of the resulting EA. Is it safe to execute these instructions with arbitrary EA addressing any byte within a cache line?

That would deserve a test but from what I've read (what is the same in various cores reference manuals and PowerISA 2.05), there is no need to align data address. The action points on the block that contains the address.
If the block containing the byte addressed by EA is in storage that is Memory
Coherence Required and a block containing the byte addressed by EA is in the
instruction cache of any processors, the block is invalidated in those instruction
caches, so that subsequent references cause the block to be fetched from main
storage.
I don't know your code but is the alignment is done at the beginning and then a loop adds the cache block size to the EA?

Related

Modify the write policy of the cache [duplicate]

Every modern high-performance CPU of the x86/x86_64 architecture has some hierarchy of data caches: L1, L2, and sometimes L3 (and L4 in very rare cases), and data loaded from/to main RAM is cached in some of them.
Sometimes the programmer may want some data to not be cached in some or all cache levels (for example, when wanting to memset 16 GB of RAM and keep some data still in the cache): there are some non-temporal (NT) instructions for this like MOVNTDQA (https://stackoverflow.com/a/37092 http://lwn.net/Articles/255364/)
But is there a programmatic way (for some AMD or Intel CPU families like P3, P4, Core, Core i*, ...) to completely (but temporarily) turn off some or all levels of the cache, to change how every memory access instruction (globally or for some applications / regions of RAM) uses the memory hierarchy? For example: turn off L1, turn off L1 and L2? Or change every memory access type to "uncached" UC (CD+NW bits of CR0??? SDM vol3a pages 423 424, 425 and "Third-Level Cache Disable flag, bit 6 of the IA32_MISC_ENABLE MSR (Available only in processors based on Intel NetBurst microarchitecture) — Allows the L3 cache to be disabled and enabled, independently of the L1 and L2 caches.").
I think such action will help to protect data from cache side channel attacks/leaks like stealing AES keys, covert cache channels, Meltdown/Spectre. Although this disabling will have an enormous performance cost.
PS: I remember such a program posted many years ago on some technical news website, but can't find it now. It was just a Windows exe to write some magical values into an MSR and make every Windows program running after it very slow. The caches were turned off until reboot or until starting the program with the "undo" option.
The Intel's manual 3A, Section 11.5.3, provides an algorithm to globally disable the caches:
11.5.3 Preventing Caching
To disable the L1, L2, and L3 caches after they have been enabled and have received cache fills, perform the following steps:
Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the NW flag to 0.
Flush all caches using the WBINVD instruction.
Disable the MTRRs and set the default memory type to uncached or set all MTRRs for the uncached memory
type (see the discussion of the discussion of the TYPE field and the E flag in Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR”).
The caches must be flushed (step 2) after the CD flag is set to ensure system memory coherency. If the caches are
not flushed, cache hits on reads will still occur and data will be read from valid cache lines.
The intent of the three separate steps listed above addresses three distinct requirements: (i) discontinue new data
replacing existing data in the cache (ii) ensure data already in the cache are evicted to memory, (iii) ensure subsequent memory references observe UC memory type semantics. Different processor implementation of caching
control hardware may allow some variation of software implementation of these three requirements. See note below.
NOTES
Setting the CD flag in control register CR0 modifies the processor’s caching behaviour as indicated
in Table 11-5, but setting the CD flag alone may not be sufficient across all processor families to
force the effective memory type for all physical memory to be UC nor does it force strict memory
ordering, due to hardware implementation variations across different processor families. To force
the UC memory type and strict memory ordering on all of physical memory, it is sufficient to either
program the MTRRs for all physical memory to be UC memory type or disable all MTRRs.
For the Pentium 4 and Intel Xeon processors, after the sequence of steps given above has been
executed, the cache lines containing the code between the end of the WBINVD instruction and
before the MTRRS have actually been disabled may be retained in the cache hierarchy. Here, to remove code from the cache completely, a second WBINVD instruction must be executed after the
MTRRs have been disabled.
That's a long quote but it boils down to this code
;Step 1 - Enter no-fill mode
mov eax, cr0
or eax, 1<<30 ; Set bit CD
and eax, ~(1<<29) ; Clear bit NW
mov cr0, eax
;Step 2 - Invalidate all the caches
wbinvd
;All memory accesses happen from/to memory now, but UC memory ordering may not be enforced still.
;For Atom processors, we are done, UC semantic is automatically enforced.
xor eax, eax
xor edx, edx
mov ecx, IA32_MTRR_DEF_TYPE ;MSR number is 2FFH
wrmsr
;P4 only, remove this code from the L1I
wbinvd
most of which is not executable from user mode.
AMD's manual 2 provides a similar algorithm in section 7.6.2
7.6.2 Cache Control Mechanisms
The AMD64 architecture provides a number of mechanisms for controlling the cacheability of memory. These are described in the following sections.
Cache Disable. Bit 30 of the CR0 register is the cache-disable bit, CR0.CD. Caching is enabled
when CR0.CD is cleared to 0, and caching is disabled when CR0.CD is set to 1. When caching is
disabled, reads and writes access main memory.
Software can disable the cache while the cache still holds valid data (or instructions). If a read or write
hits the L1 data cache or the L2 cache when CR0.CD=1, the processor does the following:
Writes the cache line back if it is in the modified or owned state.
Invalidates the cache line.
Performs a non-cacheable main-memory access to read or write the data.
If an instruction fetch hits the L1 instruction cache when CR0.CD=1, some processor models may read
the cached instructions rather than access main memory. When CR0.CD=1, the exact behavior of L2
and L3 caches is model-dependent, and may vary for different types of memory accesses.
The processor also responds to cache probes when CR0.CD=1. Probes that hit the cache cause the
processor to perform Step 1. Step 2 (cache-line invalidation) is performed only if the probe is
performed on behalf of a memory write or an exclusive read.
Writethrough Disable. Bit 29 of the CR0 register is the not writethrough disable bit, CR0.NW. In
early x86 processors, CR0.NW is used to control cache writethrough behavior, and the combination of
CR0.NW and CR0.CD determines the cache operating mode.
[...]
In implementations of the AMD64 architecture, CR0.NW is not used to qualify the cache operating
mode established by CR0.CD.
This translates to this code (very similar to the Intel's one):
;Step 1 - Disable the caches
mov eax, cr0
or eax, 1<<30
mov cr0, eax
;For some models we need to invalidated the L1I
wbinvd
;Step 2 - Disable speculative accesses
xor eax, eax
xor edx, edx
mov ecx, MTRRdefType ;MSR number is 2FFH
wrmsr
Caches can also be selectively disabled at:
Page level, with the attribute bits PCD (Page Cache Disable) [Only for Pentium Pro and Pentium II].
When both are clear the MTTR of relevance is used, if PCD is set the aching
Page level, with the PAT (Page Attribute Table) mechanism.
By filling the IA32_PAT with caching types and using the bits PAT, PCD, PWT as a 3-bit index it's possible to select one the six caching types (UC-, UC, WC, WT, WP, WB).
Using the MTTRs (fixed or variable).
By setting the caching type to UC or UC- for specific physical areas.
Of these options only the page attributes can be exposed to user mode programs (see for example this).

x86 store when data is in 2 different blocks

Supose linux-32: the aligment rules say, for example, that doubles (8 Bytes) must be aligned to 4 Bytes. This means that, if we assume 64 Bytes cache blocks (a typical value for modern processors) we can have a double aligned in the 60th position, which mean that this double will be in 2 different cache blocks.
It could even happen that both parts of the double were in 2 different cache blocks located in 2 different 4KB pages.
After this brief introduction to put the question in context, I have a couple of doubts:
1- For an assembler programming where we seek maximum performance, it is recommended to prevent these things from happenning by putting alignment directives, right? Or, for any reason that I unknow, making the alignment to make the double in only 1 block doesn't imply any performance change?
2- How will be the store instruction decoded in the in the mentioned case? (supose modern intel microarchitecture). I mean, I know that a normal store x86 instruction is decoded in a micro-fused pair of str-addr and str-data, but in this case where 2 different cache blocks (and maybe even 2 different 4KB pages) are involved, this will be decoded in 2 micro-fused pair of str-addr and str-data (one for the first 4 bytes of the double and another for the last 4 bytes)? Or it will be decoded to a single micro-fused pair but having to do both the str-addr and the str-data twice the work until finally being able to exit the execution port?
Yes, of course you should align a double whenever possible, like compilers do except when forced by ABI struct-layout rules to misalign them. (The ABI was designed when i386 was current so a double always required 2 loads anyway.)
The current version of the i386 System V ABI requires 16-byte stack alignment, so local doubles (that have to get spilled at all instead of kept in regs) can be aligned, and malloc has to return memory suitable for any type, and alignof(max_align_t) = 16 on 32-bit Linux (8 on 32-bit Windows) so 32-bit malloc will always give you at least 16 (or 8)-byte aligned memory. And of course in static storage you control the alignment with align (NASM) or .p2align (GAS) directives.
For the perf downsides of cacheline splits and page splits, see How can I accurately benchmark unaligned access speed on x86_64
re: decoding: The address isn't know at decode time so obviously any effects of a line-split page-split are resolved later. For stores, probably no effect until the store-buffer entry has to commit to L1d cache. Are two store buffer entries needed for split line/page stores on recent Intel? - probably no, allocating a 2nd entry after executing the store-address uop is implausible.
For loads, re-running the load through the execution unit to get the other half (or whatever uneven split), using internal line-split buffers to combine data. (Not re-dispatching from the RS, just internally handled in the load port. But the RS does aggressively replay uops waiting for the result of a load.)
Re-running the store-data uop for a misaligned store seems unlikely, too. I don't think we see extra counts for uops_dispatched_port.port_4 perf events.

Why is two lines that differ in their address by precisely 65,536 bytes cannot be stored in the cache at the same?

I read a book Andrew Tanenbaum - structured computer organization (6th edition) - 2012, and I dont understand it.
"This mapping scheme puts consecutive memory lines in consecutive cache entries.In fact, up to 64 KB of contiguous data can be stored in the cache.However,two lines that differ in their address by precisely 65,536 bytes or any integral multiple of that number cannot be stored in the cache at the same time (because they have the same Line value).For example, if a program accesses data at location X and next executes an instruction that needs data at location X + 65,536 (or anyother location within the same line), the second instruction will force the cache entry to be reloaded, overwriting what was there.If this happens often enough, itcan result in poor behavior.In fact, the worst-case behavior of a cache is worsethan if there were no cache at all, since each memory operation involves reading in an entire cache line instead of just one word."
Why are they have the same Line value?
This is because of two concepts in cache design. First, a concept called associativity in cache design. For every possible input cache-line address (64 byte aligned on a modern x86-64 system) there are only N possible slots in the cache it may access.
The second is the a problem much like what is encountered with the hash function used within a hashmap. Simply put, some scheme has to be used in converting input addresses to slots in the cache. Notice that the book says the cache can hold 64 (presumably imperial) kilobytes. 64 kB is 65,536 bytes, and the magical cache-ruining distance in question is ALSO 65,536! So, in this case the address -> cache slot function is a simple and operation, and it appears the author is talking about a 1-way associativity cache (that is, each line may only be stored in ONE location inside the cache.) Leading to the mentioned conflict.
Why would microprocessor designers choose a simple AND function? Well... Because it's simple, mainly. Instead of wasting transistors on more complex logic, a basic operation like AND will suffice.

Writing a full cache line at an uncached address before reading it again on x64

On x64 if you first write within a short period of time the contents of a full cache line at a previously uncached address, and then soon after read from that address again can the CPU avoid having to read the old contents of that address from memory?
As effectively it shouldn't matter what the contents of the memory was previously because the full cache line worth of data was fully overwritten? I can understand that if it was a partial cache line write of an uncached address, followed by a read then it would incur the overhead of having to synchronise with main memory etc.
Looking at documentation regards write allocate, write combining and snooping has left me a little confused about this matter. Currently I think that an x64 CPU cannot do this?
In general, the subsequent read should be fast - as long as store-to-load forwarding is able to work. In fact, it has nothing to do with writing an entire cache line at all: it should also work (with the same caveat) even for smaller writes!
Basically what happens on normally (i.e., WB memory regions) mapped memory is that the store(s) will add several entries to the store buffer of the CPU. Since the associated memory isn't currently cached, these entries are going to linger for some time, since an RFO request will occur to pull that line into cache so that it can be written.
In the meantime, you issue some loads that target the same memory just written, and these will usually be satisfied by store-to-load forwarding, which pretty much just notices that a store is already in the store buffer for the same address and uses it as the result of the load, without needing to go to memory.
Now, store forwarding doesn't always work. In particular, it never works on any Intel (or likely, AMD) CPU when the load only partially overlaps the most recent involved store. That is, if you write 4 bytes to address 10, and then read 4 bytes from addresss 9, only 3 bytes come from that write, and the byte at 9 has to come from somewhere else. In that case, all Intel CPUs simply wait for all the involved stores to be written and then resolve the load.
In the past, there were many other cases that would also fail, for example, if you issued a smaller read that was fully contained in an earlier store, it would often fail. For example, given a 4-byte write to address 10, a 2-byte read from address 12 is fully contained in the earlier write - but often would not forward as the hardware was not sophisticated enough to detect that case.
The recent trend, however, is that all the cases other than the "not fully contained read" case mentioned above successfully forward on modern CPUs. The gory details are well-covered, with pretty pictures, on stuffedcow and Agner also covers it well in his microarchitecture guide.
From the above linked document, here's what Agner says about store-forwarding on Skylake:
The Skylake processor can forward a memory write to a subsequent read
from the same address under certain conditions. Store forwarding is
one clock cycle faster than on previous processors. A memory write
followed by a read from the same address takes 4 clock cycles in the
best case for operands of 32 or 64 bits, and 5 clock cycles for other
operand sizes.
Store forwarding has a penalty of up to 3 clock cycles extra when an
operand of 128 or 256 bits is misaligned.
A store forwarding usually takes 4 - 5 clock cycles extra when an
operand of any size crosses a cache line boundary, i.e. an address
divisible by 64 bytes.
A write followed by a smaller read from the same address has little or
no penalty.
A write of 64 bits or less followed by a smaller read has a penalty of
1 - 3 clocks when the read is offset but fully contained in the
address range covered by the write.
An aligned write of 128 or 256 bits followed by a read of one or both
of the two halves or the four quarters, etc., has little or no
penalty. A partial read that does not fit into the halves or quarters
can take 11 clock cycles extra.
A read that is bigger than the write, or a read that covers both
written and unwritten bytes, takes approximately 11 clock cycles
extra.
The last case, where the read is bigger than the write is definitely a case where the store forwarding stalls. The quote of 11 cycles probably applies to the case that all of the involved bytes are in L1 - but the case that some bytes aren't cached at all (your scenario) it could of course take on the order of a DRAM miss, which can be hundreds of cycles.
Finally, note that none of the above has to do with writing an entire cache line - it works just as well if you write 1 byte and then read that same byte, leaving the other 63 bytes in the cache line untouched.
There is an effect similar to what you mention with full cache lines, but it deals with write combining writes, which are available either by marking memory as write-combining (rather than the usual write-back) or using the non-temporal store instructions. The NT instructions are mostly targeted towards writing memory that won't soon be subsequently read, skipping the RFO overhead, and probably don't forward to subsequent loads.

why is data structure alignment important for performance?

Can someone give me a short and plausible explanation for why the compiler adds padding to data structures in order to align its members? I know that it's done so that the CPU can access the data more efficiently, but I don't understand why this is so.
And if this is only CPU related, why is a double 4 byte aligned in Linux and 8 byte aligned in Windows?
Alignment helps the CPU fetch data from memory in an efficient manner: less cache miss/flush, less bus transactions etc.
Some memory types (e.g. RDRAM, DRAM etc.) need to be accessed in a structured manner (aligned "words" and in "burst transactions" i.e. many words at one time) in order to yield efficient results. This is due to many things amongst which:
setup time: time it takes for the memory devices to access the memory locations
bus arbitration overhead i.e. many devices might want access to the memory device
"Padding" is used to correct the alignment of data structures in order to optimize transfer efficiency.
In other words, accessing a "mis-aligned" structure will yield lower overall performance. A good example of such pitfall: suppose a data structure is mis-aligned and requires the CPU/Memory Controller to perform 2 bus transactions (instead of 1) in order to fetch the said structure, the performance is thus consequently lower.
the CPU fetches data from memory in groups of 4 bytes (it actualy depends on the hardware its 8 or other values for some types of hardware, but lets stick with 4 to keep it simple),
all is well if the data begins in an address which is dividable by 4, the CPU goes to the memory address and loads the data.
now suppose the data begins in an address not dividable by 4 say for the sake of simplicity at address 1, the CPU must take data from address 0 and then apply some algorithm to dump the byte at the 0 address , to gain access to the actual data at byte 1. this takes time and therefore lowers preformance. so it is much more efficient to have all data addresses aligned.
A cache line is a basic unit of caching. Typically it is 16-64 bytes or more.
Pentium IV: 64 bytes; Pentium Pro/II: 32 bytes; Pentium I: 32 bytes; 486: 16 bytes.
myrandomreader:
; ...
; ten instructions to generate next pseudo-random
; address in ESI from previous address
; ...
MOV EAX, DS:[ESI] ; X
LOOP myrandomreader
For memory read straddling two cachelines:
(for L1 cache miss) the processor must wait for the whole of cache line 1 to be read from L2->L1 into the processor before it can request the second cache line, causing a short execution stall
(for L2 cache miss) the processor must wait for two burst reads from L3 cache (if present) or main memory to complete rather than one
Processor stalls
A random 4 byte read will straddle a cacheline boundary about 5% of the time for 64 byte cachelines, 10% for 32 byte ones and 20% for 16 byte ones.
There may be additional execution overheads for some instructions on misaligned data even if it is within a cacheline. This is talked about on the Intel website for some SSE instructions.
If you are defining the structures yourself, it may make sense to look at listing all the <32bit data fields together in a struct so that padding overhead is reduced or alternatively review whether it is better to turn packing on or off for a particular structure.
On MIPS and many other platforms you don't get the choice and must align - kernel exception if you don't!!
Alignment may also matter extra specially to you if you are doing I/O on the bus or using atomic operations such as atomic increment/decrement or if you wish to be able to port your code to non-Intel.
On Intel only (!) code, a common practice is to define one set of packed structures for network and disk, and another padded set for in-memory and to have routines to convert data between these formats (also consider "endianness" for the disk and network formats).
In addition to jldupont's answer, some architectures have load and store instructions (those used to read/write to and from memory) that only operate on word aligned boundaries - so, to load a non-aligned word from memory would take two load instructions, a shift instruction, and then a mask instruction - much less efficient!

Resources