How create a debugger for self-made language? - debugging

I wanna build a language, but I think that to be useful it need at least a REPL and a debugger.
How incorporate a debugger is the thing that look like magic to me. I remember how great the old Visual FoxPro was, and how much sucks the xcode (in comparison) so I suspect is something hard.
Which kind of language make easier to integrate a debugger? A interpreter? Compiled? Imperative? Functional?
Make a difference if the language is made in LLVM, Lua/LuaJit, on top of objective-c? (I ask about this because for my pet language how easier could be is a critical factor. So the easier target that will make a easier answer, I suppose)
Is the best way to use GDB/LLDB or roll my own?
Where to look about this?

This will be much easier for an interpreter. Before executing a statement, you can check whether a global "paused" flag is set and pause if it is. Before executing a procedure, you can check to see whether a "traced" flag is set on that procedure, and set the "paused" flag, restoring it to its previous value on return.

Visual Studio Code offer the possibility to implement your own extensions adding:
Custom Language
Custom REPL
Custom Debugger
Here is a tutorial covering all those topics step by step.

Related

need to make a simple Windows app, what languague should I use?

I need to make s very simple app, with a canvas where the user would be able to drag & drop PNG files, drag, scale and rotate them on the canvas and export to XML their name & coordinates.
I'm pretty good at Android(java) programming, but as I just tried plain java with windowsBuilder for the first time, it appeared to be rather inconvenient and probably would take at least a few days to find my way around in it.
So I thought, maybe you could suggest some simple "program maker" style language/ide that could be quickly picked up for such purpose?
Right now I'm thinking of Flash... any other ideas?
Thanks!
I would go with C#, with the .NET framework.
As you already know Java, it shouldn't be that hard, as C# is also an object-oriented language.
They are some differences, of course, and I won't explain them here.
But if you want a real Windows app, it may be your best choice, as you'll then have access to all the Windows features through the .NET framework.
Everything is very well documented.
You can also choose C++ (managed), but it might be a little harder, coming from Java.
About the IDE, simply use VisualStudio (the express edition is free).
Hope this will help.
I learned JavaScript (I know it's not Java, but similar nonetheless and still object oriented) first and then C++. The transition was quite easy since both are more-or-less object oriented. Like Macmade said, Visual Studio is great to begin, but I prefer using gedit and then compiling with G++. It's more forgiving than Visual Studio and you don't have to create a project and whatnot just to start writing the code. With a text editor like gedit and a standalone compiler, G++, it's much easier to just write the code and then build the program.
I'd stay away from Flash. I know AS2/3 pretty well and I can say that C is much easier to code, at least for me. Everyone has their personal preferences, though. One plus to C is you don't have to buy Flash.

What is debugging specifically?

What is debugging a code and how would I go about this ?
Debugging is the process to in which you make sure your code contains no bugs (or at least as few as possible ;) ).
And there is no "way to go about this" per se. But there are widely accepted techniques that are time-proven to work (as you will see in the first link).
There are also specialized tools for when in the need to debug some specific peace of code... but that will always depend on your needs.
Debugging code is observing it's run-time behavior, typically through a rich IDE such as Eclipse or Visual Studio. You can inspect the values assigned to variables and set breakpoints in the code where you are basically saying that you would like to start observing the programs behavior when that line of code is executed.

Create a Debugging IDE for proprietary language

I am using a rather obsure, proprietary langauge called WIL/Winbatch that had an awful IDE (winbatch studio).
I would like to develop an alternative environment; however, without the ability to set breakpoints, step, and examine variables, there is really no point. How does one begin even researching how to implementing a debugger for a proprietary language? Is it even legal?
I guess I'm kind of locked in a mindset that the debugger portion must be able to examine the statements that are provided to it in WIL as they are executed, right? So somehow i have to trap the output of the interpreter? Or is it just a matter of reading locations in memory using whatever language?
Thanks in advance.
Having been there and successfully completed the task, here are the things to keep in mind:
Build it as a plug-in/extension to an IDE your team is already familiar with and likes. They'll thank you for providing an interface consistent with what they really know how to use, plus you can focus entirely on the features that make your language different from others.
You'll have to learn the debugging protocol for your language. In our case, we had source access to the runtime for the interpreted language. In other cases, you may find documentation for GDB local or remote debugging interface, a library you can link to for the language's debugging protocols, or maybe even figure out what the call stacks look like and wrap the Windows Debugging API to analyze it behind the scenes.
Don't build in excess of what the language provides. Adding debugging features takes a lot of time, and they have a rather annoying habit of needing to be significantly altered or completely rewritten as versions of the target language are updated.
Why are you tied so closely to this language? If it's not well supported, there are many others you can use. Anyway, to actually answer your question, the difficulty depends on whether it is a compiled or interpreted language and whether or not you have access to any source code (which it seems of course, that you don't). That said, this would be a very challenging project as you would have to reverse engineer the compiled code for it to have any meaning. Your time would be better spent learning another (better) language.
Perhaps if you can give us an idea of why you want to use this language we could give you some help?

Why is debugging better in an IDE? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 6 years ago.
Improve this question
I've been a software developer for over twenty years, programming in C, Perl, SQL, Java, PHP, JavaScript, and recently Python. I've never had a problem I could not debug using some careful thought, and well-placed debugging print statements.
I respect that many people say that my techniques are primitive, and using a real debugger in an IDE is much better. Yet from my observation, IDE users don't appear to debug faster or more successfully than I can, using my stone knives and bear skins. I'm sincerely open to learning the right tools, I've just never been shown a compelling advantage to using visual debuggers.
Moreover, I have never read a tutorial or book that showed how to debug effectively using an IDE, beyond the basics of how to set breakpoints and display the contents of variables.
What am I missing? What makes IDE debugging tools so much more effective than thoughtful use of diagnostic print statements?
Can you suggest resources (tutorials, books, screencasts) that show the finer techniques of IDE debugging?
Sweet answers! Thanks much to everyone for taking the time. Very illuminating. I voted up many, and voted none down.
Some notable points:
Debuggers can help me do ad hoc inspection or alteration of variables, code, or any other aspect of the runtime environment, whereas manual debugging requires me to stop, edit, and re-execute the application (possibly requiring recompilation).
Debuggers can attach to a running process or use a crash dump, whereas with manual debugging, "steps to reproduce" a defect are necessary.
Debuggers can display complex data structures, multi-threaded environments, or full runtime stacks easily and in a more readable manner.
Debuggers offer many ways to reduce the time and repetitive work to do almost any debugging tasks.
Visual debuggers and console debuggers are both useful, and have many features in common.
A visual debugger integrated into an IDE also gives you convenient access to smart editing and all the other features of the IDE, in a single integrated development environment (hence the name).
Some examples of some abilities that an IDE debugger will give you over trace messages in code:
View the call stack at any point in time, giving you a context for your current stack frame.
Step into libraries that you are not able to re-compile for the purposes of adding traces (assuming you have access to the debug symbols)
Change variable values while the program is running
Edit and continue - the ability to change code while it is running and immediately see the results of the change
Be able to watch variables, seeing when they change
Be able to skip or repeat sections of code, to see how the code will perform. This allows you to test out theoretical changes before making them.
Examine memory contents in real-time
Alert you when certain exceptions are thrown, even if they are handled by the application.
Conditional breakpointing; stopping the application only in exceptional circumstances to allow you to analyse the stack and variables.
View the thread context in multi-threaded applications, which can be difficult to achieve with tracing (as the traces from different threads will be interleaved in the output).
In summary, print statements are (generally) static and you'll need to re-compile to get additional information if your original statements weren't detailed enough. The IDE removes this static barrier, giving you a dynamic toolkit at your fingertips.
When I first started coding, I couldn't understand what the big deal with debuggers was and I thought I could achieve anything with tracing (granted, that was on unix and the debugger was GDB). But once you learn how to properly use a graphical debugger, you don't want to go back to print statements.
An IDE debugger lets you change the
values of variables at run-time.
An IDE
debugger lets you see the value of
variables you didn't know you wanted
to see when execution began.
An IDE
debugger lets you see the call stack
and examine the state of the
function passed weird values.
(think this function is called from
hundreds of places, you don't know
where these weird values are coming
from)
An IDE debugger lets you
conditionally break execution at any
point in code, based on a condition,
not a line number.
An IDE debugger will let you examine the state of the program in the case of an unhandled exception instead of just crapping out.
Here's one thing that you definitely cannot debug with "print" statement, which is when a customer brings you memory dump and says "your program crashed, can you tell me why?"
Print statements all through your code reduces readability.
Adding and removing them for debug purposes only is time consuming
Debuggers track the call stack making it easy to see where you are
Variables can be modified on the fly
Adhoc commands can be executed during a pause in execution to assist diagnosing
Can be used IN CONJUNCTION with print statements : Debug.Write("...")
I think debugging using print statements is a lost art, and very important for every developer to learn. Once you know how to do that, certain classes of bugs become much easier to debug that way than through an IDE. Programmers who know this technique also have a really good feel of what's useful information to put in a log message (not to mention you'll actually end up reading the log) for non-debugging purposes as well.
That said, you really should know how to use the step-through debugger, since for a different class of bugs it is WAY easier. I'll leave it up to the other excellent answers already posted to explain why :)
Off the top of my head:
Debugging complex objects - Debuggers allow you to step deep into an object's innards. If your object has, say, an array of array of complex objects, print statements will only get you so far.
The ability to step past code - Debuggers will also allow you to skip past code you don't want to execute. True, you could do this manually as well, but it's that much more code you have to inject.
As alternative to debug in IDE you can try great Google Chrome extension PHP Console with php library that allows to:
See errors & exception in Chrome JavaScript console & in notification popups.
Dump any type variable.
Execute PHP code remotely.
Protect access by password.
Group console logs by request.
Jump to error file:line in your text editor.
Copy error/debug data to clipboard (for testers).
I haven't been developing for nearly 20 years, but I find that using a IDE / debugger I can :
see all kinds of things I might not have thought to have included in a print statement
step through code to see if it matches the path I thought it would take
set variables to certain values to make code take certain branches
One reason to use the IDE might be that modern IDEs support more than simple breakpoints. For example, Visual Studio offers the following advanced debugging features:
define conditional breakpoints (break only if a condition is met, or only on the n-th time the statement at the breakpoint is executed)
break on an unhandled exception or whenever a (specific) ecxeption is to be thrown
change variable while debugging
repeating a piece of code by setting the next line to be executed
etc.
Also, when using the debugger, you won't have to remove all your print statements once you have finished debugging.
In my experience, simple printouts have one huge advantage that no one seems to mention.
The problem with an IDE debugger is that everything happens at real time. You halt the program at a certain time, then you step through the steps one at a time and it is impossible to go back if you suddenly want to see what happened before. This is completley at odds with how our brain works. The brain collects information, and gradually forms an oppinion. It might be necessary to iterate the events several times in doing so, but once you have stepped past a certain point, you cannot go back.
In contrast to this, a selected series of printouts/logging gives you a "spatial projection of the temporal events". It gives you a complete story of what happened, and you can go back and fourth several times very easily by just scrolling up and down. It makes it easy to answer questions like "did A occur before B happened". It can make you see patterns you wernt even looking for.
So in my experience. IDE and debuggers are fantastic tools to solve simple problems when something in one single call-stack went wrong, and explore the current state of the machine at a certain crash.
However, when we approach more difficoult problems where gradual changing of state is involved. Where for example one algorithm corrupted a data structure, that in turn caused anohter algorithm to fail. Or if we want to answer questions like "how often do this happen", "do things happen in the order and in the way as I imagine them to happen". etc. Then the "old fashined" logging/printout technique has a clear advantage.
The best things is to use either technique when it is most suitable, for example use logging/printouts to get to some bugs, and pause at a breakpoint where we need to explore the current state more in detail.
There are also hybrid approaches. For example, when you do console.log(object) you get a data-structure widget in the log that you can expand and explore more in detail.This is many times a clear advantage over a "dead" text log.
One thing that I'm surprised I haven't seen in another answer is that the 2 debugging methods are not mutually exclusive.
printf debugging can work quite nicely even if you're using a standard debugger (whether IDE based or not). In particular with a logging framework so you can leave all or most of in the released product to help with diagnosing customer problems.
As noted in pretty much all the other answers here, the key nice thing about a standard debugger is that it allows you to more easily examine (and potentially change) the details of the program state. You don't have to know up front what you might want to look at - it's all available at your fingertips (more or less).
Because debugging multi-threaded applications with print statements will drive you bananas. Yes you can still do it with print statements but you'd need a lot of them and unravelling the sequential print out of statements to emulate the multi-threaded executiong would take a long long time.
Human brains are only single-threaded unfortunately.
Since you asked for pointers to books... As far as Windows debugging goes, John Robbins has several editions of a good book on Windows debugging:
Debugging Applications for Microsoft .NET and Microsoft Windows
Note that the most recent edition (Debugging Microsoft .NET 2.0 Applications) is .NET only, so you might want an older one (like in the first link) if you want native code debugging (it covers both .NET and native).
I personally feel the answer is as simple as "A integrated debugger/IDE gives you a wealth of different information quickly without the need for punching in commands. The information tends to be there in front of you without you haven't tell it what to show you.
The ease in which the information can be retrieved is what makes them better than just command-line debugging, or "printf" debugging.
Advantages of a debugger over a printf (note not an IDE debugger but any debugger)
Can set watchpoints.
This is one of my favourite ways of finding memory corruptions
Can debug a binary that you can't recompile at the moment
Can debug a binary that takes a long time to recompile
Can change variables on the fly
Can call functions on the fly
Doesn't have the problem where debug statemenets are not flushed and hence timing issue can not be debugged acuratly
Debuggers help with core dumps, print statements dont'
This is what I use most on VS.NET debugging windows:
Call stack, which is also a great way to figure out someone else's code
Locals & Watches.
Immediate window, which is basically a C# console and also lets me change variable contents, initialize stuff etc.
The ability to skip a line, set the next statement to be executed somewhere else.
The ability to hover over variables and have a tool-tip showing me their values.
In summary, it gives me a 360 degree view of the state of my executing code, not just a small window.
Never found a book teaching this kind of stuff, but then again, it seems to be quite simple, it's pretty much WYSIWYG.
A debugger can attach to a running process
Often easier to debug threaded code from a debugger
With an IDE debugger you can see the values of ALL the variables in the current scope (all the way up the call stack) whenever you halt execution.
Print statements can be great but dumping so much information to the screen at any given place can produce a whole lot of print statements.
Also, many IDE debuggers let you type in and evaluate methods, and evaluate members while you are halted, which further increases the amount of print statements you'd have to do.
I do feel that debuggers are better for some languages than for others however...
My general opinion is that IDE debuggers are absolutely, amazingly wonderful for managed languages like Java or C#, are fairly useful for C++, and are not very useful for scripting languages like Python (but it could be that I just haven't tried a good debugger for any scripting languages yet).
I absolutely love the debugger in IntelliJ IDEA when I do Java development. I just use print statements when I use Python.
As someone said above: Debugger != IDE.
gdb and (back in the day) TurboDebugger (stand-alone) work just fine for the languages they support[ed], thank you. (or an even older technology: Clipper debugger linked into the xBase executable itself) -- none of these required an IDE
Also, though C/++ coding is more rare, printf statements sometimes mask off the very bug you are trying to find! (initialization problems in auto vars on the stack, for instance, or memory allocation/alignment)
Finally, as others stated, you can use both. Some real-time-ish problems almost require a print, or at least a judicious "*video_dbg = ( is_good ? '+' : '-');" somewhere into video memory. My age is showing, this was under DOS :-)
TMTOWTDI
In addition to much of what the other posters have said, I really like stepping through one line at a time along with the computer, as it forces me to think about one line at a time. Often I will catch the bug without even looking at variable values simply because I am forced to look at it as I click the 'next line' button. However, I don't think my answer will help you, Bill, because you probably have this skill already.
As far as learning resources go, I haven't used any -- I just explore all the menus and options.
Is this even real question from real programmer?
Anyone who spent even 5 mins debugging with print statements and debugging with IDE - it will OCCUR to him/her without even asking!
I've used both prints and IDEs for debugging and I would much rather debug using an IDE. The only time for me when that doesn't work is in time critical situations (like debugging online games) where you litter the code with print statements and then look at the log files after it has gone horribly wrong. Then if you still cannot figure it out, add more prints and repeat.
Just wanted to mention a useful feature of a console debugger vs printf and vs debugger in an IDE.
You can attach to a remote application (obvioustly, compiled in DEBUG mode) and inspect its state dumping the debugger output to a file using POSIX tee utility. Compared to printf, you can choose where to output the state in run-time.
It helped me a lot when I was debugging Adobe Flash applications deployed in an agressive environment. You just need to define some actions that print required state in each breakpoint, start the console debugger with fdb | tee output.log, and walk through some breakpoints. After that you can print the log and analyse the information by thorough comparison of the state in different breakpoints.
Unfortunatelly, this feature [logging to a file] is rarely available in GUI debuggers, making developers compare the state of objects in their head.
By the way, my opinion is that one should plan where and what to debug before staring a debugger.
Well another thing is that if you join a new old project and nobody really knows how the code is doing what it's doing, then you can't debug by echoing variables/objects/... b/c you have no idea what code is executed at all.
At my job I am facing exactly that kind of situation and visual XDebuging helps me getting an idea about what is going on and where, at all.
Best regards
Raffael
In addition to the many things that have been already mentioned, one of the most important advantages of a debugger over printf is that using printf statements assumes that you know in which function the bug resides. In many cases you don't, so you have to make a few guesses and add print statements to many other functions in order to localise it. The bug may be in framework code or somewhere far removed from where you think it is. In a debugger it is far easier to set breakpoints to examine the state in different areas of the code and at different points in time.
Also, a decent debugger will let you do printf-style debugging by attaching conditions and actions to breakpoints, so that you still retain the benefits of printf debugging, but without modifying the code.
Debugging in an IDE is invaluable in an environment where error logs and shell access are unavailable, such as a shared host. In that case, an IDE with a remote debugger is the only tool which allows you to do simple things such as view stderr or stdout.
A problem with using print statements is it makes a mess of your code. IE, you have a function with 10 parts to it and you know it crashes somewhere, but you're not sure where. So you add in 10 extra print statements to pinpoint where the bug is. Once you've found and solved your bug, you now have to clean up by removing all of those print statements. Maybe you'll do that. Maybe you'll forget and it'll end up in production and your user's console will be full of debug prints.
Wauw, do I like this question. I never dared to pose it...
It seems that people just have different ways of working.
For me what works best is:
Having a solid mind model of my code, including memory management
Using instrumentation (like print statements) to follow what's happening.
I've earned my living programming for over 40 years now, working at non-trivial technical and scientific applications in C++ and Python daily, and I have the personal experience that a debugger doesn't help me a bit.
I don't say that's good. I don't say that's bad. I just want to share it.
It's not just debugging. An IDE helps you build better software faster in a lot of ways:
refactoring tools
intellisense to make api's more discoverable, or remind of exact spelling/case of familiar items(not much use if you've used the same system for 15 years, but that's rare)
save on typing by autocompleting variable and class names
find certain kinds of errors before you even start to compile
Automatically jump to variable/method/class declarations/definitions, even if they're not in the same file or folder.
Break on unhandled and handled exceptions
I could go on.

VB6 (erk) - Inline functions?

I use VB6 for an application.
Is it possible to force the compiler to inline a function?
Or is there an add-in that achieves the same thing?
There's a secure part of my code that I want to make difficult to hack, by repeating the code at every point where it is used instead of being listed once as a function.
Hope someone can answer my question!
IMO if this is what you're doing as a security measure, you have bigger problems than getting VB to inline your function. And I don't think there is any provision in VB6 to do this. AND I tend to think that this technique would make it easier to hack your code, since you'd see the same really important function repeated over and over again... Sorry :-(
There is no support for inlining a function. However there are several things working in your favor.
First VB6 is notoriously difficult to decompile as witness by the lack of decompilers on the market over the history. The results has been less than useful for people trying to recover lost source code or hack VB6.
But...
If you are using ActiveX DLLs then it could very easy to hack your software by a person writing a compatible DLL. The best way my company found to deal with this is to make critical objects public non-creatable and exchange packed binary data.
The public non-creatable prevents somebody from referencing the DLL, creating instance of that object and then running tests to see what you are doing. The binary data is to obscure the data you are exchanging.
In you look in the literature about COM there are more secure ways of dealing with these issues but these are simple things you can do to make a ActiveX application more difficult to hack.
My company goal isn't to make it impossible for somebody to hack our software but make it difficult enough that it cost less for our competitor to deal with us rather than try to hack our system (A CAD/CAM system)
As Dave said there is no support for that in the VB compiler.
If you really want to this why not run a search & replace on a copy of your code and build that copy. Doing that on the command line shouldn't be too difficult.

Resources