RSA factorization, explanation of the c^d % n - algorithm

In my RSA, I am using the following code for computing c^d % m.
However, I am not sure, how this version containing the double mod operation, works in the background.
function [f] = rsa ( m, d, c )
f = 1;
for index = 1:d
f = f * mod(c , m );
f = mod( f, m);
end
There is another method using a binary exppansion of the exponent d, where the exponent is represented by the sum of 2^n, which is known for me.
Could somebody help me? Thanks.

If you ignore the mod function calls for the moment, each iteration of the loop will simply multiply f (starting at 1) by c.
Therefore, after d iterations, f will equal
1*c*c*...*c = c^d
You could then apply the modulus operation at the end to compute "c^d%m".
However, doing it like this is very likely to overflow, so the code instead computes the modulus during every iteration to prevent overflow.
In summary, this code is simply doing a bruteforce calculation of "c^d%m". This approach will be far too slow in practice as d tends to be a very large number in RSA.

Related

Calculate integer powers with a given loop invariant

I need to derive an algorithm in C++ to calculate integer powers m^n that uses the loop invariant r = y^n and the loop condition y != m.
I tried using the instruction y= y+1 to advance, but I don´t know how to obtain (y+1)^n from y^n, and it shouldn't be difficult to find . So, probably, this isn't the correct path to follow
Could you help me to derive the program?
EDIT: this is a problem from the subject Data Structures and Algorithms. The difficulty ( if there is at all) shouldn't be mathematic.
EDIT2: Just to clarify, the difficulty of the problem is using the invariant y^n and loop condition y != m. If I vary the n I'm not achieving that
Given w and P such that 2^w > m, P > 2^(wn), and 2^((P-1)/2) = -1 mod P,
then 2 is a generator mod P, and there will be some x such that 2^x = m mod P, so:
if (m<=1 || n==1)
return m;
if (n==0)
return 1;
let y = 2;
let r = 1<<n;
while(y!=m)
{
y = (y*2)%P;
r = (r*(1<<n))%P;
}
return r;
Unless your function needs to produce bignum results, you can just pick the largest P that fits into an integer in your language.
There is no useful relation between (y+1)^n and y^n (you can write (y+1)^n = (√(y^n)+1)^n or (y+1)^n = (1+1/y)^n y^n, but this leads you nowhere).
If y was factored, you could exploit (a.b)^n = (a^n).(b^n), but you would need a table of the nth powers of the primes.
I can't see an answer that makes sense.
You can also think of the Binomial theorem,
(y+1)^n = y^n + n y^(n-1) + n(n-1)/2 y^(n-2) + ... 1
but this is worse than anything: you need to compute n binomial coefficients, and update all powers of y from 0 to n. The total cost of the computation would be ridiculously high.

Comparing sqrt(n) with the rational p/q

You are given an integer n and a rational p/q (p and q are integers).
How do you compare sqrt(n) and p/q?
Solution 1: sqrt(n) <= (double) p / q
Should work, but calls sqrt which is slower than just using multiplication/division.
Solution 2: (double) n * q * q <= p * p
Better, but I can't help thinking that because we are using floats, we might get an incorrect answer if p/q is very close to sqrt(n). Moreover, it requires converting integers to floats, which is (marginally) slower than just working with integers.
Solution 3: n*q*q <= p*p
Even better, but one runs into trouble if p and q get big because of overflow (typically, if p or q >= 2^32 when working with 64 bits integers).
Solution 4: Use solution 3 with a bignum library / in a programming language that has unbound integers.
Solution 5: (q / p) * n <= p / q
Successfully avoids any overflow problems, but I am not sure that this is correct in all cases, because of integer division...
So... I would happily go with solution 2 or 4, but I was wondering if anyone has clever tricks to solve this problem or maybe a proof (or counter example) that solution 5 works (or not).
As I commented, a simple and elegant solution is to use bignum, especially if builtin, or easily available in the chosen language. It will work without restriction on n,p,q.
I will develop here an alternate solution based on IEEE floating point when:
n,p,q are all representable exactly with the given floating point precision (e.g. are within 24 or 53 bits for single or double IEEE 754)
a fused multiply add is available.
I will note f the float type, and f(x) the conversion of value x to f, presumably rounded to nearest floating point, tie to even.
fsqrt(x) will denote the floating point approximation of exact square root.
let f x = fsqrt(f(n)) and f y = f(p) / f(q).
By IEEE 754 property, both x and y are nearest floating point to exact result, and n=f(n), p=f(p), q=f(q) from our preliminary conditions.
Thus if x < y then problem is solved sqrt(n) < p/q.
And if x > y then problem is solved too sqrt(n) > p/q.
Else if x == y we can't tell immediately...
Let's note the residues f r = fma(x,x,-n) and f s = fma(y,q,-p).
We have r = x*x - n and s = y*q - p exactly. Thus s/q = y - p/q (the exact operations, not the floating point ones).
Now we can compare the residual errors. (p/q)^2 = y^2-2*y*s/q+ (s/q)^2. How does it compare to n = x^2 - r?
n-(p/q)^2 = 2*y*s/q - r - (s/q)^2.
We thus have an approximation of the difference d, at 1st order: f d = 2*y*s/f(q) - r. So here is a C like prototype:
int sqrt_compare(i n,i p,i q)
/* answer -1 if sqrt(n)<p/q, 0 if sqrt(n)==p/q, +1 if sqrt(n)>p/q */
/* n,p,q are presumed representable in f exactly */
{
f x=sqrt((f) n);
f y=(f) p / (f) q;
if(x<y) return -1;
if(x>y) return +1;
f r=fma(x,x,-(f) n);
f s=fma(y,(f) q,-(f) p);
f d=y*s/(f) q - r;
if(d<0) return -1;
if(d>0) return +1;
if(r==0 && s==0) return 0; /* both exact and equal */
return -1; /* due to 2nd order */
}
As you can see, it's relatively short, should be efficient, but is hard to decipher, so at least from this POV, I would not qualify this solution as better than trivial bignum.
You might consider solution 3 with integers 2x the size,
n * uint2n_t{q} * q <= uint2n_t{p} * p
This overflows if n * q * q overflows, but in that case you return false anyway.
uint2n_t nqq;
bool overflow = __builtin_mul_overflow(uint2n_t{n} * q, q, &nqq);
(!overflow) && (uint2n_t{n} * q * q <= uint2n_t{p} * p);

Find the value of f(T) for big value T

I am trying to solve a problem which is described below,
Given value of f(0) and k , which are integers.
I need to find value of f( T ). where T<=1010
Recursive function is,
f(n) = 2*f(n-1) , if 4*f(n-1) <=k
k - ( 2*f(n-1) ) , if 4*f(n-1) > k
My efforts,
#include<iostream>
using namespace std;
int main(){
long k,f0,i;
cin>>k>>f0;
long operation ;
cin>>operation;
long answer=f0;
for(i=1;i<=operation;i++){
answer=(4*answer <= k )?(2*answer):(k-(2*answer));
}
cout<<answer;
return 0;
}
My code gives me right answer. But, The code will run 1010 time in worst case that gives me Time Limit Exceed. I need more efficient solution for this problem. Please help me. I don't know the correct algorithm.
If 2f(0) < k then you can compute this function in O(log n) time (using exponentiation by squaring modulo k).
r = f(0) * 2^n mod k
return 2 * r >= k ? k - r : r
You can prove this by induction. The induction hypothesis is that 0 <= f(n) < k/2, and that the above code fragment computes f(n).
Here's a Python program which checks random test cases, comparing a naive implementation (f) with an optimized one (g).
def f(n, k, z):
r = z
for _ in xrange(n):
if 4*r <= k:
r = 2 * r
else:
r = k - 2 * r
return r
def g(n, k, z):
r = (z * pow(2, n, k)) % k
if 2 * r >= k:
r = k - r
return r
import random
errs = 0
while errs < 20:
k = random.randrange(100, 10000000)
n = random.randrange(100000)
z = random.randrange(k//2)
a1 = f(n, k, z)
a2 = g(n, k, z)
if a1 != a2:
print n, k, z, a1, a2
errs += 1
print '.',
Can you use methmetical solution before progamming and compulating?
Actually,
f(n) = f0*2^(n-1) , if f(n-1)*4 <= k
k - f0*2^(n-1) , if f(n-1)*4 > k
thus, your code will write like this:
condition = f0*pow(2, operation-2)
answer = condition*4 =< k? condition*2: k - condition*2
For a simple loop, your answer looks pretty tight; one could optimise a little bit using answer<<2 instead of 4*answer, and answer<<1 for 2*answer, but quite possibly your compiler is already doing that. If you're blowing the time with this, it might be necessary to reduce the loop itself somehow.
I can't figure out a mathematical pattern that #Shannon was going for, but I'm thinking we could exploit the fact that this function will sooner or later cycle. If the cycle is short enough, then we could short the loop by just getting the answer at the same point in the cycle.
So let's get some cycle detection equipment in the form of Brent's algorithm, and see if we can cut the loop to reasonable levels.
def brent(f, x0):
# main phase: search successive powers of two
power = lam = 1
tortoise = x0
hare = f(x0) # f(x0) is the element/node next to x0.
while tortoise != hare:
if power == lam: # time to start a new power of two?
tortoise = hare
power *= 2
lam = 0
hare = f(hare)
lam += 1
# Find the position of the first repetition of length λ
mu = 0
tortoise = hare = x0
for i in range(lam):
# range(lam) produces a list with the values 0, 1, ... , lam-1
hare = f(hare)
# The distance between the hare and tortoise is now λ.
# Next, the hare and tortoise move at same speed until they agree
while tortoise != hare:
tortoise = f(tortoise)
hare = f(hare)
mu += 1
return lam, mu
f0 = 2
k = 198779
t = 10000000000
def f(x):
if 4 * x <= k:
return 2 * x
else:
return k - 2 * x
lam, mu = brent(f, f0)
t2 = t
if t >= mu + lam: # if T is past the cycle's first loop,
t2 = (t - mu) % lam + mu # find the equivalent place in the first loop
x = f0
for i in range(t2):
x = f(x)
print("Cycle start: %d; length: %d" % (mu, lam))
print("Equivalent result at index: %d" % t2)
print("Loop iterations skipped: %d" % (t - t2))
print("Result: %d" % x)
As opposed to the other proposed answers, this approach actually could use a memo array to speed up the process, since the start of the function is actually calculated multiple times (in particular, inside brent), or it may be irrelevant, depending on how big the cycle happens to be.
The algorithm you proposed already has O(n).
To come up with more efficient algorithms, there is not that much direction we can go about. Some typical options we have
1.Decease the coefficients of the linear term( but I doubt it would make a difference in this case
2.Change to O(Logn)(typically use some sort of divide and conquer technique)
3.Change to O(1)
In this case, we can do the last one.
The recursion function is a piece-wise function
f(n) = 2*f(n-1) , if 4*f(n-1) <=k
k - ( 2*f(n-1) ) , if 4*f(n-1) > k
Let's tackle it by case:
case 1: if 4*f(n-1) <= k (1)(assuming the starting index is zero)
this is a obvious a geometry series
a_n = 2*a_n-1
Therefore, have the formula
Sn = 2^(n-1)f(0) ----()
Case 2: if 4*f(n-1) > k (2), we have
a_n = -2a_n-1 + k
Assuming, a_j is the element in the sequence which just satisfy condition (2)
Nestedly sub in an_1 to the formula, you will obtain the equation
an = k -2k +4k -8k... +(-2)^(n-j)* a_j
k -2k 4k -8... is another gemo series
Sn = k*(1-2^(n-j))/(1-2) ---gemo series sum formula with starting value k and ratio = -2
Therefore, we have a formula for an in the case 2
an = k * (1-2^(n-j))/(1-2) + (-2)^(n-j) * a_j ----(**)
All we left to do it to find aj which just dissatisfy condition (1) and satisfy (2)
This can be obtained in constant time again using the formula we have for case 1:
find n such that, 4*an = 4*Sn = 4*2^(n-1)*f(0)
solve for n: 4*2^(n-1)*f(0) = k, if n is not integer, take ceiling of n
In my first attempt to solve this question, I had wrong assumption that the value of the sequence is monotonically increasing but in fact the sequence might jump between case 1 and case 2. Therefore, there might not be constant algorithm to solve the problem.
However, we can use utilize the result above to skip iterative update complexity.
The overall algorithm will look something like:
start with T, K, and f(0)
compute n that make the condition switch using either (*) or (**)
update f(0) with f(n), update T - n
repeat
terminate when T-n = 0(the last iteration might over compute causing T-n<0, therefore, you need to go back a little bit if that happen)
Create a map that can store your results. Before finding f(n) check in that map, if solution is already existed or not.
If exists, use that solution.
Otherwise find it, store it for future use.
For C++:
Definition:
map<long,long>result;
Insertion:
result[key]=value
Accessing:
value=result[key];
Checking:
map<long,long>::iterator it=result.find(key);
if(it==result.end())
{
//key was not found, find the solution and insert into result
}
else
{
return result[key];
}
Use above technique for better solution.

How can I evenly distribute distinct keys in a hashtable?

I have this formula:
index = (a * k) % M
which maps a number 'k', from an input set K of distinct numbers, into it's position in a hashtable. I was wondering how to write a non-brute force program that finds such 'M' and 'a' so that 'M' is minimal, and there are no collisions for the given set K.
If, instead of a numeric multiplication you could perform a logic computation (and / or /not), I think that the optimal solution (minimum value of M) would be as small as card(K) if you could get a function that related each value of K (once ordered) with its position in the set.
Theoretically, it must be possible to write a truth table for such a relation (bit a bit), and then simplify the minterms through a Karnaugh Table with a proper program. Depending on the desired number of bits, the computational complexity would be affordable... or not.
If a is co-prime to M then a * k = a * k' mod M if, and only if, k = k' mod M, so you might as well use a = 1, which is always co-prime to M. This also covers all the cases in which M is prime, because all the numbers except 0 are then co-prime to M.
If a and M are not co-prime, then they share a common factor, say b, so a = x * b and M = y * b. In this case anything multiplied by a will also be divisible by b mod M, and you might as well by working mod y, not mod M, so there is nothing to be gained by using an a not co-prime to M.
So for the problem you state, you could save some time by leaving a=1 and trying all possible values of M.
If you are e.g. using 32-bit integers and really calculating not (a * k) mod M but ((a * k) mod 2^32) mod M you might be able to find cases where values of a other than 1 do better than a=1 because of what happens in (a * k) mod 2^32.

Finding a Perfect Square efficiently

How to find the first perfect square from the function: f(n)=An²+Bn+C? B and C are given. A,B,C and n are always integer numbers, and A is always 1. The problem is finding n.
Example: A=1, B=2182, C=3248
The answer for the first perfect square is n=16, because sqrt(f(16))=196.
My algorithm increments n and tests if the square root is a integer nunber.
This algorithm is very slow when B or C is large, because it takes n calculations to find the answer.
Is there a faster way to do this calculation? Is there a simple formula that can produce an answer?
What you are looking for are integer solutions to a special case of the general quadratic Diophantine equation1
Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0
where you have
ax^2 + bx + c = y^2
so that A = a, B = 0, C = -1, D = b, E = 0, F = c where a, b, c are known integers and you are looking for unknown x and y that satisfy this equation. Once you recognize this, solutions to this general problem are in abundance. Mathematica can do it (use Reduce[eqn && Element[x|y, Integers], x, y]) and you can even find one implementation here including source code and an explanation of the method of solution.
1: You might recognize this as a conic section. It is, and people have been studying them for thousands of years. As such, our understanding of them is very deep and your problem is actually quite famous. The study of them is an immensely deep and still active area of mathematics.

Resources