Convert Euler to Heun (improved Euler) - wolfram-mathematica

I already have implemented Euler method in Mathematica.
Now I want to convert this method to Heun method (improved Euler).
I have this Euler implementation:
a = 2;(*my a parameter*)
b = .01; (*my b parameter*)
x = 0; (*starting x value*)
p = 1; (*starting p value*)
t = 1; (*step size t*)
f[p_] := a p - b p^2; (*my function*)
f[0] = 1;
eulertable = {}; (*build table (x,p).n steps in loop*)
For[n = 1,
n <= 21, n++,
AppendTo[eulertable, {x, p}];
p = p + t f[p];
x = x + t;]
Now I want to implement this with the Heun method. I already have this implementation of the Heun method.
heun[f_, {x_, x0_, xn_}, {y_, y0_}, steps_] :=
Block[{ xold = x0, yold = y0, sollist = {{x0, y0}}, x, y, h },
h = N[(xn - x0) / steps];
Do[ xnew = xold + h;
k1 = h * (f /. {x -> xold, y -> yold});
k2 = h * (f /. {x -> xold + h, y -> yold + k1});
ynew = yold + .5 * (k1 + k2);
sollist = Append[sollist, {xnew, ynew}];
xold = xnew;
yold = ynew,
{steps}
];
Return[sollist]
]
But I need to convert this method to have the input like it is in my Euler method. So I have to convert the Heun method that I have the parameter a, b, x, t, p, f[].
As I am new with Mathematica I am having problems to convert the method.

Why do you put f[0]=1?
Replace
p = p + t f[p];
x = x + t;
with
p1 = p + t f[p];
p2 = p + t f[p1];
p = (p1+p2)/2;
x = x + t;
Your step size is rather large for the values of your parameters.

Related

Monte Carlo program throws a method error in Julia

I am running this code but it shows a method error. Can someone please help me?
Code:
function lsmc_am_put(S, K, r, σ, t, N, P)
Δt = t / N
R = exp(r * Δt)
T = typeof(S * exp(-σ^2 * Δt / 2 + σ * √Δt * 0.1) / R)
X = Array{T}(N+1, P)
for p = 1:P
X[1, p] = x = S
for n = 1:N
x *= R * exp(-σ^2 * Δt / 2 + σ * √Δt * randn())
X[n+1, p] = x
end
end
V = [max(K - x, 0) / R for x in X[N+1, :]]
for n = N-1:-1:1
I = V .!= 0
A = [x^d for d = 0:3, x in X[n+1, :]]
β = A[:, I]' \ V[I]
cV = A' * β
for p = 1:P
ev = max(K - X[n+1, p], 0)
if I[p] && cV[p] < ev
V[p] = ev / R
else
V[p] /= R
end
end
end
return max(mean(V), K - S)
end
lsmc_am_put(100, 90, 0.05, 0.3, 180/365, 1000, 10000)
error:
MethodError: no method matching (Array{Float64})(::Int64, ::Int64)
Closest candidates are:
(Array{T})(::LinearAlgebra.UniformScaling, ::Integer, ::Integer) where T at /Volumes/Julia-1.8.3/Julia-1.8.app/Contents/Resources/julia/share/julia/stdlib/v1.8/LinearAlgebra/src/uniformscaling.jl:508
(Array{T})(::Nothing, ::Any...) where T at baseext.jl:45
(Array{T})(::UndefInitializer, ::Int64) where T at boot.jl:473
...
Stacktrace:
[1] lsmc_am_put(S::Int64, K::Int64, r::Float64, σ::Float64, t::Float64, N::Int64, P::Int64)
# Main ./REPL[39]:5
[2] top-level scope
# REPL[40]:1
I tried this code and I was expecting a numeric answer but this error came up. I tried to look it up on google but I found nothing that matches my situation.
The error occurs where you wrote X = Array{T}(N+1, P). Instead, use one of the following approaches if you need a Vector:
julia> Array{Float64, 1}([1,2,3])
3-element Vector{Float64}:
1.0
2.0
3.0
julia> Vector{Float64}([1, 2, 3])
3-element Vector{Float64}:
1.0
2.0
3.0
And in your case, you should write X = Array{T,1}([N+1, P]) or X = Vector{T}([N+1, P]). But since there's such a X[1, p] = x = S expression in your code, I guess you mean to initialize a 2D array and update its elements through the algorithm. For this, you can define X like the following:
X = zeros(Float64, N+1, P)
# Or
X = Array{Float64, 2}(undef, N+1, P)
So, I tried the following in your code:
# I just changed the definition of `X` in your code like the following
X = Array{T, 2}(undef, N+1, P)
#And the result of the code was:
julia> lsmc_am_put(100, 90, 0.05, 0.3, 180/365, 1000, 10000)
3.329213731484463

Reverse the isometric projection algorithm

I've got this code:
const a = 2; // always > 0 and known in advance
const b = 3; // always > 0 and known in advance
const c = 4; // always > 0 and known in advance
for (let x = 0; x <= a; x++) {
for (let y = 0; y <= b; y++) {
for (let z = 0; z <= c; z++) {
for (let p = 0; p <= 1; p++) {
for (let q = 0; q <= 2; q++) {
let u = b + x - y + p;
let v = a + b + 2 * c - x - y - 2 * z + q;
let w = c + x + y - z;
}
}
}
}
}
The code generates (a+1)*(b+1)*(c+1)*2*3 triplets of (u,v,w), each of them is unique. And because of that fact, I think it should be possible to write reversed version of this algorithm that will calculate x,y,z,p,q based on u,v,w. I understand that there are only 3 equations and 5 variables to get, but known boundaries for x,y,z,p,q and the fact that all variables are integers should probably help.
for (let u = ?; u <= ?; u++) {
for (let v = ?; v <= ?; v++) {
for (let w = ?; w <= ?; w++) {
x = ?;
y = ?;
z = ?;
p = ?;
q = ?;
}
}
}
I even managed to produce the first line: for (let u = 0; u <= a + b + 1; u++) by taking the equation for u and finding min and max but I'm struggling with moving forward. I understand that min and max values for v are depending on u, but can't figure out the formulas.
Examples are in JS, but I will be thankful for any help in any programming language or even plain math formulas.
If anyone is interested in what this code is actually about - it projects voxel 3d model to triangles on a plain. u,v are resulting 2d coordinates and w is distance from the camera. Reversed algorithm will be actually a kind of raytracing.
UPDATE: Using line equations from 2 points I managed to create minmax conditions for v and code now looks like this:
for (let u = 0; u <= a + b + 1; u++) {
let minv = u <= a ? a - u : -a + u - 1;
let maxv = u <= b ? a + 2 * c + u + 2 : a + 2 * b + 2 * c - u + 3;
for (let v = minv; v <= maxv; v++) {
...
}
}
I think I know what to do with x, y, z, p, q on the last step so the problem left is minw and maxw. As far as I understand those values should depend both on u and v and I must use plane equations?
If the triplets are really unique (didn't check that) and if p and q always go up to 1 and 2 (respectively), then you can "group" triplets together and go up the loop chain.
We'll first find the 3 triplets that where made in the same "q loop" : the triplets make with the same x,y,z,p. As only q change, the only difference will be v, and it will be 3 consecutive numbers.
For that, let's group triplets such that, in a group, all triplets have the same u and same w. Then we sort triplets in groups by their v parameters, and we group them 3 by 3. Inside each group it's easy to assign the correct q variable to each triplet.
Then reduce the groups of 3 into the first triplet (the one with q == 0). We start over to assign the p variable : Group all triplets such that they have same v and w inside a group. Then sort them by the u value, and group them 2 by 2. This let's us find their p value. Remember that each triplet in the group of 3 (before reducing) has that same p value.
Then, for each triplet, we have found p and q. We solve the 3 equation for x,y,z :
z = -1 * ((v + w) - a - b - 3c -q)/3
y = (w - u + z + b - c - p)/2
x = u + y - b - p
After spending some time with articles on geometry and with the huge help from Wolfram Alpha, I managed to write needed equations myself. And yes, I had to use plane equations.
const a = 2; // always > 0 and known in advance
const b = 3; // always > 0 and known in advance
const c = 4; // always > 0 and known in advance
const minu = 0;
const maxu = a + b + 1;
let minv, maxv, minw, maxw;
let x, y, z, p, q;
for (let u = minu; u <= maxu; u++) {
if (u <= a) {
minv = a - u;
} else {
minv = -a + u - 1;
}
if (u <= b) {
maxv = a + 2 * c + u + 2;
} else {
maxv = a + 2 * b + 2 * c - u + 3;
}
for (let v = minv; v <= maxv; v++) {
if (u <= b && v >= a + u + 1) {
minw = (-a + 2 * b - 3 * u + v - 2) / 2;
} else if (u > b && v >= a + 2 * b - u + 2) {
minw = (-a - 4 * b + 3 * u + v - 5) / 2;
} else {
minw = a + b - v;
}
if (u <= a && v <= a + 2 * c - u + 1) {
maxw = (-a + 2 * b + 3 * u + v - 1) / 2;
} else if (u > a && v <= -a + 2 * c + u) {
maxw = (5 * a + 2 * b - 3 * u + v + 2) / 2;
} else {
maxw = a + b + 3 * c - v + 2;
}
minw = Math.round(minw);
maxw = Math.round(maxw);
for (let w = minw; w <= maxw; w++) {
z = (a + b + 3 * c - v - w + 2) / 3;
q = Math.round(2 - (z % 1) * 3);
z = Math.floor(z);
y = (a + 4 * b + q - 3 * u - v + 2 * w + 3) / 6;
p = 1 - (y % 1) * 2;
y = Math.floor(y);
x = (a - 2 * b - 3 * p + q + 3 * u - v + 2 * w) / 6;
x = Math.round(x);
}
}
}
This code passes my tests, but if someone can create better solution, I would be very interested.

Mathematica more input is needed

I'm not much familiar with this programming language and I just need to run one function to compute some coeficients.
f[x] = x^2 - 2 x + 2
g[x] = x^3 - 2 x^2 - 2 x - 2
f1 = Root[f[x], 1];
f2 = Root[f[x], 2];
g1 = Root[g[x], 1];
g2 = Root[g[x], 2];
g3 = Root[g[x], 3];
foo[rootList, alpha, beta] :=
(
res = {};
For[i = 1, i <= Length[rootList], i++, alphaI = rootList[[i]];
For[j = 1, j <= Length[rootList], j++, betaJ = rootList[[j]];
If[betaJ != beta,
(
kor = Simplify [(alphaI - alpha) / (beta - betaJ)];
res = Append[res, N[kor, 5]];
),
]
]
]
Return[res];
)
roots = [f1, f2, g1, g2, g3];
cs = foo[roots, f1, g1]
this piece of code gives me this error:
Syntax::tsntxi: "For[i=1,i<=Length[rootList],i++,alphaI=rootList[[i]];" is incomplete; more input is needed.
And don't see what is wrong. I'm using mathematica 10.4
Fixing the syntax errors.
f[x_] := x^2 - 2 x + 2
g[x_] := x^3 - 2 x^2 - 2 x - 2
f1 = Root[f[x], 1];
f2 = Root[f[x], 2];
g1 = Root[g[x], 1];
g2 = Root[g[x], 2];
g3 = Root[g[x], 3];
foo[rootList_, alpha_, beta_] :=
(
res = {};
For[i = 1, i <= Length[rootList], i++, alphaI = rootList[[i]];
For[j = 1, j <= Length[rootList], j++, betaJ = rootList[[j]];
If[betaJ != beta,
(
kor = Simplify[(alphaI - alpha)/(beta - betaJ)];
res = Append[res, N[kor, 5]];
)
]
]
];
res
)
roots = {f1, f2, g1, g2, g3};
cs = foo[roots, f1, g1]

How can i fix a multiplicity issue in mathematica 10.0 loop?

I am solving a project in Mathematica 10 and I think that the best way to do it is using a loop like For or Do. After build it I obtain the results I looking for but with a to much big multiplicity. Here is the isolated part of the code:
(*Initializing variables*)
epot[0] = 1; p[0] = 1; \[Psi][0] = HermiteH[0, x] E^(-(x^2/2));
e[n_] := e[n] = epot[n];
(*Defining function*)
\[Psi][n_] := \[Psi][n] = (Sum[p[k]*x^k,{k,0,4*n}]) [Psi][0];
(*Differential equation*)
S = - D[D[\[Psi][n], x], x] + x^2 \[Psi][n] + x^4 \[Psi][n - 1] - Sum[e[n-k]*\[Psi][k],{k,0,n}];
(*Construction of the loop*)
S1 = Collect[E^(x^2/2) S, x, Simplify];
c = Coefficient[S1, x, 0];
sol = Solve[c == 0, epot[n]]; e[n] = epot[n] /. sol;
For[j = 1, j <= 4 n, j++,
c = Coefficient[S1, x, j];
sol = Solve[c == 0, p[j]];
p[j] = p[j] /. sol;];
(*Results*)
Print[Subscript[e, n], "= ", e[n] // InputForm];
Subscript[e, 1]= {{{3/4}}}
Print[ArrayDepth[e[n]]];
3 (*Multiplicity, it should be 1*)
Print[Subscript[\[Psi], n], "= ", \[Psi][n]];
Subscript[\[Psi], 1]= {{E^(-(x^2/2)) (1-(3 x^2)/8-x^4/8)}}
Print[ArrayDepth[\[Psi][n]]];
2 (*Multiplicity, it should be 1*)
After this calculation, the question remaining is how do i substitute this results in the original functions. Thank you very much.

1)a workaround for "NMaximize" error "function unbounded." but don't know why 2) more importantly, how to speed up this 3d region plot (see update2)

When I was trying to find the maximum value of f using NMaximize, mathematica gave me a error saying
NMaximize::cvdiv: Failed to converge to a solution. The function may be unbounded.
However, if I scale f with a large number, say, 10^5, 10^10, even 10^100, NMaximize works well.
In the two images below, the blue one is f, and the red one is f/10^10.
Here come my questions:
Is scaling a general optimization trick?
Any other robust, general workarounds for the optimizations such
needle-shape functions?
Because the scaling barely changed the shape of the needle-shape of
f, as shown in the two images, how can scaling work here?
thanks :)
Update1: with f included
Clear["Global`*"]
d = 1/100;
mu0 = 4 Pi 10^-7;
kN = 97/100;
r = 0.0005;
Rr = 0.02;
eta = 1.3;
e = 3*10^8;
s0 = 3/100;
smax = 1/100; ks = smax/s0;
fre = 1; tend = 1; T = 1;
s = s0*ks*Sin[2*Pi*fre*t];
u = D[s, t];
umax = N#First[Maximize[u, t]];
(*i=1;xh=0.1;xRp=4.5`;xLc=8.071428571428573`;
i=1;xh=0.1;xRp=4.5;xLc=8.714285714285715;*)
i = 1; xh = 0.1; xRp = 5.5; xLc = 3.571428571428571`;
(*i=1;xh=0.1`;xRp=5.`;xLc=6.785714285714287`;*)
h = xh/100; Rp = xRp/100; Lc = xLc/100;
Afai = Pi ((Rp + h + d)^2 - (Rp + h)^2);
(*Pi (Rp-Hc)^2== Afai*)
Hc = Rp - Sqrt[Afai/Pi];
(*2Pi(Rp+h/2) L/2==Afai*)
L = (2 Afai)/(\[Pi] (h + 2 Rp));
B = (n mu0 i)/(2 h);
(*tx = -3632B+2065934/10 B^2-1784442/10 B^3+50233/10 B^4+230234/10 \
B^5;*)
tx = 54830.3266978739 (1 - E^(-3.14250266080741 B^2.03187556833859));
n = Floor[(kN Lc Hc)/(Pi r^2)] ;
A = Pi*(Rp^2 - Rr^2);
b = 2*Pi*(Rp + h/2);
(* -------------------------------------------------------- *)
Dp0 = 2*tx/h*L;
Q0 = 0;
Q1 = ((1 - 3 (L tx)/(Dp h) + 4 (L^3 tx^3)/(Dp^3 h^3)) Dp h^3)/(
12 eta L) b;
Q = Piecewise[{{Q1, Dp > Dp0}, {Q0, True}}];
Dp = Abs[dp[t]];
ode = u A - A/e ((s0^2 - s^2)/(2 s0 )) dp'[t] == Q*Sign[dp[t]];
sol = First[
NDSolve[{ode, dp[0] == 0}, dp, {t, 0, tend} ,
MaxSteps -> 10^4(*Infinity*), MaxStepFraction -> 1/30]];
Plot[dp''[t] A /. sol, {t, T/4, 3 T/4}, AspectRatio -> 1,
PlotRange -> All]
Plot[dp''[t] A /10^10 /. sol, {t, T/4, 3 T/4}, AspectRatio -> 1,
PlotRange -> All, PlotStyle -> Red]
f = dp''[t] A /. sol;
NMaximize[{f, T/4 <= t <= 3 T/4}, t]
NMaximize[{f/10^5, T/4 <= t <= 3 T/4}, t]
NMaximize[{f/10^5, T/4 <= t <= 3 T/4}, t]
NMaximize[{f/10^10, T/4 <= t <= 3 T/4}, t]
update2: Here comes my real purpose. Actually, I am trying to make the following 3D region plot. But I found it is very time consuming (more than 3 hours), any ideas to speed up this region plot?
Clear["Global`*"]
d = 1/100;
mu0 = 4 Pi 10^-7;
kN = 97/100;
r = 0.0005;
Rr = 0.02;
eta = 1.3;
e = 3*10^8;
s0 = 3/100;
smax = 1/100; ks = smax/s0;
f = 1; tend = 1/f; T = 1/f;
s = s0*ks*Sin[2*Pi*f*t];
u = D[s, t];
umax = N#First[Maximize[u, t]];
du[i_?NumericQ, xh_?NumericQ, xRp_?NumericQ, xLc_?NumericQ] :=
Module[{Afai, Hc, L, B, tx, n, A, b, Dp0, Q0, Q1, Q, Dp, ode, sol,
sF, uF, width, h, Rp, Lc},
h = xh/100; Rp = xRp/100; Lc = xLc/100;
Afai = Pi ((Rp + h + d)^2 - (Rp + h)^2);
Hc = Rp - Sqrt[Afai/Pi];
L = (2 Afai)/(\[Pi] (h + 2 Rp));
B = (n mu0 i)/(2 h);
tx = 54830.3266978739 (1 - E^(-3.14250266080741 B^2.03187556833859));
n = Floor[(kN Lc Hc)/(Pi r^2)] ;
A = Pi*(Rp^2 - Rr^2);
b = 2*Pi*(Rp + h/2);
Dp0 = 2*tx/h*L;
Q0 = 0;
Q1 = ((1 - 3 (L tx)/(Dp h) + 4 (L^3 tx^3)/(Dp^3 h^3)) Dp h^3)/(
12 eta L) b;
Q = Piecewise[{{Q1, Dp > Dp0}, {Q0, True}}];
Dp = Abs[dp[t]];
ode = u A - A/e ((s0^2 - s^2)/(2 s0 )) dp'[t] == Q*Sign[dp[t]];
sol = First[
NDSolve[{ode, dp[0] == 0}, dp, {t, 0, tend} , MaxSteps -> 10^4,
MaxStepFraction -> 1/30]];
sF = ParametricPlot[{s, dp[t] A /. sol}, {t, 0, tend},
AspectRatio -> 1];
uF = ParametricPlot[{u, dp[t] A /. sol}, {t, 0, tend},
AspectRatio -> 1];
tdu = NMaximize[{dp''[t] A /10^8 /. sol, T/4 <= t <= 3 T/4}, {t,
T/4, 3 T/4}, AccuracyGoal -> 6, PrecisionGoal -> 6];
width = Abs[u /. tdu[[2]]];
{uF, width, B}]
RegionPlot3D[
du[1, h, Rp, Lc][[2]] <= umax/6, {h, 0.1, 0.2}, {Rp, 3, 10}, {Lc, 1,
10}, LabelStyle -> Directive[18]]
NMaximize::cvdiv is issued if the optimum improved a couple of orders of magnitude during the optimization process, and the final result is "large" in an absolute sense. (To prevent the message in a case where we go from 10^-6 to 1, for example.)
So yes, scaling the objective function can have an effect on this.
Strictly speaking this message is a warning, and not an error. My experience is that if you see it, there's a good chance that your problem is unbounded for some reason. In any case, this warning is a hint that you might want to double check your system to see if that might be the case.

Resources