How to get Core Data to make only one instance of entity of type - macos

So. Before I get singleton pattern hate on this message hear me out. I'd love to hear ideas. I'm making a program that I think I need to use core data for, because later I want the status of some variables to be easily accessible from OS X, and multiple iOS devices.
What I'm making is an OS X program that will control phidgets (phidgets.com) to control and listen for status changes in real world objects. Example: whether a motor is turned on or not. Turn a motor on and off. Turn on status lights, etc.
I originally thought I'd just make global variables that I change, poll and manipulate in order to have a central status board for the logic of the program to work off of. But, because of the engineering that is put into core data every year by apple, I am assuming making this work with core data will allow me to more easily have options to sync this later with iOS devices that could control or monitor the said status' remotely.
Is there a nifty way you can imagine to:
-startup the program, confirm there is only one entity of type "SystemStatus", if there isn't one, make one. is there is one, we continue and are able to let the program update it's attributes with status of the real world objects it's controlling.
using core data was something I thought of also, because it will allow me a place to persist stored history of data gathered too. Example: motor bearing temperature over time.

If you ensure that access to this object is done through your API, Core Data becomes an implementation detail behind the getter method of the singleton object. There are no facilities in Core Data to tell it to create only one object, but if you ensure access to the object is done through a wrapper of your own, you can fetch it on demand and if it doesn't exist, you can insert it, save, and pass it to the caller.
An important thing to consider when using Core Data objects is multithreading. Passing the same object to multiple threads is very error-prone and requires locking mechanisms (or use of Apple's block-based API). This is not very straightforward for what you describe. Consider either a wrapper object which uses Core Data objects internally (wraps access to properties in block-based API) or using a different approach than Core Data.

Related

Can I use SQLite for heavy use purpose?

Consider two application.
"A" application receives data from internet like player position and other details
"B" application which also needs the player position but it will be blocked from accessing internet. So the only way is to use SQLite sync player position (these frequently updates in milliseconds).
I can't even use socket or any other plugins too. So do you think SQLite can handle read and write in milliseconds without using CPU heavily ?
If you wish to share the data in anything like real-time then I would use something like inter-process pipes or file mapping (memory) for this.
Writing data to and reading it back from any form of hardware storage will add quite a delay to the data passing, which will only become worse as the hardware data cache is filled.
Hardware is okay for historic data.
Both are supported by Win32 and should be accessible even if you use .NET to produce a UWP application.
See here

Using Core Data as cache

I am using Core Data for its storage features. At some point I make external API calls that require me to update the local object graph. My current (dumb) plan is to clear out all instances of old NSManagedObjects (regardless if they have been updated) and replace them with their new equivalents -- a trump merge policy of sorts.
I feel like there is a better way to do this. I have unique identifiers from the server, so I should be able to match them to my objects in the store. Is there a way to do this without manually fetching objects from the context by their identifiers and resetting each property? Is there a way for me to just create a completely new context, regenerate the object graph, and just give it to Core Data to merge based on their unique identifiers?
Your strategy of matching, based on the server's unique IDs, is a good approach. Hopefully you can get your server to deliver only the objects that have changed since the time of your last update (which you will keep track of, and provide in the server call).
In order to update the Core Data objects, though, you will have to fetch them, instantiate the NSManagedObjects, make the changes, and save them. You can do this all in a background thread (child context, performBlock:), but you'll still have to round-trip your objects into memory and back to store. Doing it in a child context and its own thread will keep your UI snappy, but you'll still have to do the processing.
Another idea: In the last day or so I've been reading about AFIncrementalStore, an NSIncrementalStore implementation which uses AFNetworking to provide Core Data properties on demand, caching locally. I haven't built anything with it yet but it looks pretty slick. It sounds like your project might be a good use of this library. Code is on GitHub: https://github.com/AFNetworking/AFIncrementalStore.

Extending functionality of existing program I don't have source for

I'm working on a third-party program that aggregates data from a bunch of different, existing Windows programs. Each program has a mechanism for exporting the data via the GUI. The most brain-dead approach would have me generate extracts by using AutoIt or some other GUI manipulation program to generate the extractions via the GUI. The problem with this is that people might be interacting with the computer when, suddenly, some automated program takes over. That's no good. What I really want to do is somehow have a program run once a day and silently (i.e. without popping up any GUIs) export the data from each program.
My research is telling me that I need to hook each application (assume these applications are always running) and inject a custom DLL to trigger each export. Am I remotely close to being on the right track? I'm a fairly experienced software dev, but I don't know a whole lot about reverse engineering or hooking. Any advice or direction would be greatly appreciated.
Edit: I'm trying to manage the availability of a certain type of professional. Their schedules are stored in proprietary systems. With their permission, I want to install an app on their system that extracts their schedule from whichever system they are using and uploads the information to a central server so that I can present that information to potential clients.
I am aware of four ways of extracting the information you want, both with their advantages and disadvantages. Before you do anything, you need to be aware that any solution you create is not guaranteed and in fact very unlikely to continue working should the target application ever update. The reason is that in each case, you are relying on an implementation detail instead of a pre-defined interface through which to export your data.
Hooking the GUI
The first way is to hook the GUI as you have suggested. What you are doing in this case is simply reading off from what an actual user would see. This is in general easier, since you are hooking the WinAPI which is clearly defined. One danger is that what the program displays is inconsistent or incomplete in comparison to the internal data it is supposed to be representing.
Typically, there are two common ways to perform WinAPI hooking:
DLL Injection. You create a DLL which you load into the other program's virtual address space. This means that you have read/write access (writable access can be gained with VirtualProtect) to the target's entire memory. From here you can trampoline the functions which are called to set UI information. For example, to check if a window has changed its text, you might trampoline the SetWindowText function. Note every control has different interfaces used to set what they are displaying. In this case, you are hooking the functions called by the code to set the display.
SetWindowsHookEx. Under the covers, this works similarly to DLL injection and in this case is really just another method for you to extend/subvert the control flow of messages received by controls. What you want to do in this case is hook the window procedures of each child control. For example, when an item is added to a ComboBox, it would receive a CB_ADDSTRING message. In this case, you are hooking the messages that are received when the display changes.
One caveat with this approach is that it will only work if the target is using or extending WinAPI controls.
Reading from the GUI
Instead of hooking the GUI, you can alternatively use WinAPI to read directly from the target windows. However, in some cases this may not be allowed. There is not much to do in this case but to try and see if it works. This may in fact be the easiest approach. Typically, you will send messages such as WM_GETTEXT to query the target window for what it is currently displaying. To do this, you will need to obtain the exact window hierarchy containing the control you are interested in. For example, say you want to read an edit control, you will need to see what parent window/s are above it in the window hierarchy in order to obtain its window handle.
Reading from memory (Advanced)
This approach is by far the most complicated but if you are able to fully reverse engineer the target program, it is the most likely to get you consistent data. This approach works by you reading the memory from the target process. This technique is very commonly used in game hacking to add 'functionality' and to observe the internal state of the game.
Consider that as well as storing information in the GUI, programs often hold their own internal model of all the data. This is especially true when the controls used are virtual and simply query subsets of the data to be displayed. This is an example of a situation where the first two approaches would not be of much use. This data is often held in some sort of abstract data type such as a list or perhaps even an array. The trick is to find this list in memory and read the values off directly. This can be done externally with ReadProcessMemory or internally through DLL injection again. The difficulty lies mainly in two prerequisites:
Firstly, you must be able to reliably locate these data structures. The problem with this is that code is not guaranteed to be in the same place, especially with features such as ASLR. Colloquially, this is sometimes referred to as code-shifting. ASLR can be defeated by using the offset from a module base and dynamically getting the module base address with functions such as GetModuleHandle. As well as ASLR, a reason that this occurs is due to dynamic memory allocation (e.g. through malloc). In such cases, you will need to find a heap address storing the pointer (which would for example be the return of malloc), dereference that and find your list. That pointer would be prone to ASLR and instead of a pointer, it might be a double-pointer, triple-pointer, etc.
The second problem you face is that it would be rare for each list item to be a primitive type. For example, instead of a list of character arrays (strings), it is likely that you will be faced with a list of objects. You would need to further reverse engineer each object type and understand internal layouts (at least be able to determine offsets of primitive values you are interested in in terms of its offset from the object base). More advanced methods revolve around actually reverse engineering the vtable of objects and calling their 'API'.
You might notice that I am not able to give information here which is specific. The reason is that by its nature, using this method requires an intimate understanding of the target's internals and as such, the specifics are defined only by how the target has been programmed. Unless you have knowledge and experience of reverse engineering, it is unlikely you would want to go down this route.
Hooking the target's internal API (Advanced)
As with the above solution, instead of digging for data structures, you dig for the internal API. I briefly covered this with when discussing vtables earlier. Instead of doing this, you would be attempting to find internal APIs that are called when the GUI is modified. Typically, when a view/UI is modified, instead of directly calling the WinAPI to update it, a program will have its own wrapper function which it calls which in turn calls the WinAPI. You simply need to find this function and hook it. Again this is possible, but requires reverse engineering skills. You may find that you discover functions which you want to call yourself. In this case, as well as being able to locate the location of the function, you have to reverse engineer the parameters it takes, its calling convention and you will need to ensure calling the function has no side effects.
I would consider this approach to be advanced. It can certainly be done and is another common technique used in game hacking to observe internal states and to manipulate a target's behaviour, but is difficult!
The first two methods are well suited for reading data from WinAPI programs and are by far easier. The two latter methods allow greater flexibility. With enough work, you are able to read anything and everything encapsulated by the target but requires a lot of skill.
Another point of concern which may or may not relate to your case is how easy it will be to update your solution to work should the target every be updated. With the first two methods, it is more likely no changes or small changes have to be made. With the second two methods, even a small change in source code can cause a relocation of the offsets you are relying upon. One method of dealing with this is to use byte signatures to dynamically generate the offsets. I wrote another answer some time ago which addresses how this is done.
What I have written is only a brief summary of the various techniques that can be used for what you want to achieve. I may have missed approaches, but these are the most common ones I know of and have experience with. Since these are large topics in themselves, I would advise you ask a new question if you want to obtain more detail about any particular one. Note that in all of the approaches I have discussed, none of them suffer from any interaction which is visible to the outside world so you would have no problem with anything popping up. It would be, as you describe, 'silent'.
This is relevant information about detouring/trampolining which I have lifted from a previous answer I wrote:
If you are looking for ways that programs detour execution of other
processes, it is usually through one of two means:
Dynamic (Runtime) Detouring - This is the more common method and is what is used by libraries such as Microsoft Detours. Here is a
relevant paper where the first few bytes of a function are overwritten
to unconditionally branch to the instrumentation.
(Static) Binary Rewriting - This is a much less common method for rootkits, but is used by research projects. It allows detouring to be
performed by statically analysing and overwriting a binary. An old
(not publicly available) package for Windows that performs this is
Etch. This paper gives a high-level view of how it works
conceptually.
Although Detours demonstrates one method of dynamic detouring, there
are countless methods used in the industry, especially in the reverse
engineering and hacking arenas. These include the IAT and breakpoint
methods I mentioned above. To 'point you in the right direction' for
these, you should look at 'research' performed in the fields of
research projects and reverse engineering.

What does it mean when someone says that the module has both behavior and state?

As I understand I got a code review that my module has behavior and state at the same time, what does it mean anyway ?
Isn't that the whole point of object oriented programming, that instead of operating on data directly with logical circuitry using functions. We choose to operate on these closed black-boxes (encapsulation) using a set of neatly designed keys, switches and gears.
Wouldn't such a scheme naturally contain data(state) and logic(behavior) at the same time ?
By module I mean : a real Ruby module.
I designed something like this : How to design an application keeping SOLID principles and Design Patterns in mind
and implemented the commands in a module which I used to mixin.
Whatever you are referring to, be it an object defined by a class (or type), a module, or anything else with code in it, state is data that is persisted over multiple calls to the thing. If it "remembers" anything between one execution and the next, then it has state.
Behavior, otoh, is code that manipulates or processes that state-data, or non-state data that is used only during a single execution of the code, (like parameter values passed to a function). Methods, subroutines or functions, anything that changes or does something is behavior.
Most classes, types, or whatever, have both data (state) and behavior, but....
Some classes or types are designed simply to carry data around. They are referred to as Data Transfer objects or DTOs, or Plain Old Container Objects (POCOs). They only have state, and, generally, have little or no behavior.
Other times, a class or type is constructed to hold general utility functions, (like a Math Library). It will not maintain or keep any state between the many times it is called to perform one of its utilities. The only data used in it is data passed in as parameters for each call to the library function, and that data is discarded when the routine is finished. It has behavior. but no state.
You're right in your thinking that OOP encapsulates the ideas of both behaviour and state and mixes the two things together, but from the wording of your question, I'm wondering if you have written a ruby module (mixin, whatever you want to call it) that is stateful, such that there is the potential for state leakage across multiple uses of the same module.
Without seeing the code in question I can't really give you a full answer.
In Object-Oriented terminology, an object is said to have state when it encapsulates data (attributes, properties) and is said to have behavior when it offers operations (methods, procedures, functions) that operate (create, delete, modify, make calculations) on the data.
The same concepts can be extrapolated to a ruby module, it has "state" if it defined data accessible within the module, and it has "behavior" in the form of operations provided which operate on the data.

How to store preferences for an application?

I am a newbie in Ruby coming from web development with mainly PHP/SQL. I was thinking about how I store preferences in my application. For instance, if I want to store a path as default_path and have that set also when the user restarts the application.
In the web world one would probably store this in a database or XML. Database seems overkill for a standalone application. But I am unsure wheter XML/YAML/Other-Write-Format is the way to go. And if so, where should I store these preferences? Should they be, for instance on a Mac, in ~/Library/MyAppName?
I like using YAML because it's very easily read/written by a lot of languages, making it possible for several apps to share the same configuration info. It's a well documented standard so there should be very little chance of data falling into a hole with it.
Also, because it's easy for a human to understand, and doesn't take any special tools to change, it works nicely for any data that might occasionally change in an app, either for fine-tuning or to enable special behaviors.
A little creative coding on your part that periodically checks the last modified time of the YAML file could make it so your app would modify its behavior on the fly as the prefs file is tweaked. I had a big app I didn't want to shut down for changes and set up that behavior. It ran three weeks straight, and I tweaked its operating parameters via its config file. It would read the file every minute and inherit any changes to its parameters on the fly.
Databases are a good way to store parameters/preferences if it's a centralized server or web-based app. For something distributed that runs on individual machines it makes no sense.
Ruby gives you another method for storing data called Marshaling. This will let you store a class/object to a file and reconstitute it later. If all of your user preferences are stored in a single object (or you can create an object which can hold all of the data that you need), it may be easiest to marshal the data instead of writing import/export routines to a text-based format or trying to pull in an additional library or gem.
As to where on the disk to store the data, that's up to you. Most platforms have a standard location for storing application data based on whether it's available to a single user or all users. It's usually safest to follow the common practice on your target platform of choice.
Update: The simplest example of marshaling would probably be this: Say that you have a class called UserPrefs that you use to store all of your user preferences. You can use the following code to store the preferences data into a file:
my_prefs = UserPrefs.new
# ... Fill in the 'my_prefs' object with the user's preferences, etc ...
# Store the object into a file
File.open("user_prefs.data", "wb") do |file|
Marshal.dump(my_prefs, file)
end
The next time that you load the application, you can restore those preferences using the following:
# Load prefs from file
my_prefs = nil
File.open("user_prefs.data", "rb") {|f| my_prefs = Marshal.load(f)}
At this point, the my_prefs object should be exactly the same as it was when the marshaling code was originally run. This essentially lets you take a 'snaphot' of an object at one point in time (say, when your program shuts down) and restore it later (say, when your program loads). Internally, all of the data in the structure is encoded into a single string and that string is what is stored to disk; the Marshal module simply takes care of the encoding and decoding for you.
Here is another example of using marshaling to store and retrieve data.
The default encode/decode routines built into the Marshal module are usually sufficient for most data-storing classes. Particularly complex classes may have problems, and if that is the case then you can define your own encode and decode methods (the first link includes an example of defining custom methods).
Some types of data, however, cannot be marshaled (things like handles to open files, Proc objects, etc) since they don't normally persist across Ruby sessions. If you are needing to marshal a class that includes members like this that Marshal doesn't like, you can use custom encode/decode functions to marshal the rest of the class and omit the problematic members.
I saw some applications using ruby gconf2

Resources