Genetic/Evolutionary algorithm - Painter - algorithm

My task:
Create a program to copy a picture (given as input) using primitives only (like triangle or something). The program should use evolutionary algorithm to create output picture.
My question:
I need to invent an algorithm to create populations and check them (how much - in % - they match the input picture).
I have an idea; you can find it below.
So what I want from you: advice (if you find my idea not so bad) or inspiration (maybe you have a better idea?)
My idea:
Let's say that I'll use only triangles to build the output picture.
My first population is P pictures (generated by using T randomly generated triangles - called Elements).
I check by my fitness function every pictures in population and choose E of them as elite and rest of population just remove:
To compare 2 pictures we check every pixel in picture A and compare his R,G,B with
the same pixel (the same coordinates) in picture B.
I use this:
SingleDif = sqrt[ (Ar - Br)^2 + (Ag - Bg)^2 + (Ab - Bb)^2]
then i sum all differences (from all pixels) - lets call it SumDif
and use:
PictureDif = (DifMax - SumDif)/DifMax
where
DifMax = pictureHeight * pictureWidth * 255*3
The best are used to create the next population in this way:
picture MakeChild(picture Mother, picture Father)
{
picture child;
for( int i = 0; i < T; ++i )
{
j //this is a random number from 0 to 1 - created now
if( j < 0.5 ) child.element(i) = Mother.element(i);
else child.element(i) = Father.element(i)
if( j < some small % ) mutate( child.element(i) );
}
return child;
}
So it's quite simple. Only the mutation needs a comment: So there is always some small probability that element X in child will be different than X in his parent. To do this we make random changes in element in child (change his colour by random number, or add random number to his (x,y) coordinate - or his node).
So this is my idea... I didn't test it, didn't code it.
Please check my idea - what do you think about it?

I would make the number of patches of each child dynamic and get the mutation operation to insert/delete patches with some (low) probability. Of course this could result in a lot of redundancy and bloat in the child's genome. In these situations, it is usually a good idea to use the length of an individual's genome as a parameter of the fitness function so that individuals get rewarded (with a higher fitness value) for using fewer patches. So for example if the PictureDif of individuals A and B are the same but the A has fewer patches than B, then A has a higher fitness.
Another issue is the reproductive operator that you proposed (namely, the crossover operation). In order for the evolutionary process to work efficiently, you need to achieve a reasonable exploration and exploitation balance. One way of doing this is by having a set of reproductive operators that exhibit a good fitness correlation [1] which means the fitness of a child must be close to the fitness of its parent(s).
In the case of single parent reproduction you only need to find the right mutation parameters. However, when it comes to multi-parent reproduction (crossover) one of the frequently used techniques is to produce 2 children (instead of 1) from the same 2 parents. For the first child, each gene comes from the mother with the probability of 0.2 and from the father with the probability of 0.8, and for the second child the other way around. Of course after the crossover, you can do the mutation.
Oh and one more thing, for the mutation operators, when you say
... make random changes in element in child (change his colour by random number, or add random number to his (x,y) coordinate - or his node)
it's a good idea to use a Gaussian distribution to change the colour, coordinate etc.
[1] Evolutionary Computation: A unified approach by Kenneth A. De Jong, page 69

Related

What is a greedy algorithm for this problem that is minimally optimal + proof?

The details are a bit cringe, fair warning lol:
I want to set up meters on the floor of my building to catch someone; assume my floor is a number line from 0 to length L. The specific type of meter I am designing has a radius of detection that is 4.7 meters in the -x and +x direction (diameter of 9.4 meters of detection). I want to set them up in such a way that if the person I am trying to find steps foot anywhere in the floor, I will know. However, I can't just setup a meter anywhere (it may annoy other residents); therefore, there are only n valid locations that I can setup a meter. Additionally, these meters are expensive and time consuming to make, so I would like to use as few as possible.
For simplicity, you can assume the meter has 0 width, and that each valid location is just a point on the number line aformentioned. What is a greedy algorithm that places as few meters as possible, while being able to detect the entire hallway of length L like I want it to, or, if detecting the entire hallway is not possible, will output false for the set of n locations I have (and, if it isn't able to detect the whole hallway, still uses as few meters as possible while attempting to do so)?
Edit: some clarification on being able to detect the entire hallway or not
Given:
L (hallway length)
a list of N valid positions to place a meter (p_0 ... p_N-1) of radius 4.7
You can determine in O(N) either a valid and minimal ("good") covering of the whole hallway or a proof that no such covering exists given the constraints as follows (pseudo-code):
// total = total length;
// start = current starting position, initially 0
// possible = list of possible meter positions
// placed = list of (optimal) meter placements, initially empty
boolean solve(float total, float start, List<Float> possible, List<Float> placed):
if (total-start <= 0):
return true; // problem solved with no additional meters - woo!
else:
Float next = extractFurthestWithinRange(start, possible, 4.7);
if (next == null):
return false; // no way to cover end of hall: report failure
else:
placed.add(next); // placement decided
return solve(total, next + 4.7, possible, placed);
Where extractFurthestWithinRange(float start, List<Float> candidates, float range) returns null if there are no candidates within range of start, or returns the last position p in candidates such that p <= start + range -- and also removes p, and all candidates c such that p >= c.
The key here is that, by always choosing to place a meter in the next position that a) leaves no gaps and b) is furthest from the previously-placed position we are simultaneously creating a valid covering (= no gaps) and an optimal covering (= no possible valid covering could have used less meters - because our gaps are already as wide as possible). At each iteration, we either completely solve the problem, or take a greedy bite to reduce it to a (guaranteed) smaller problem.
Note that there can be other optimal coverings with different meter positions, but they will use the exact same number of meters as those returned from this pseudo-code. For example, if you adapt the code to start from the end of the hallway instead of from the start, the covering would still be good, but the gaps could be rearranged. Indeed, if you need the lexicographically minimal optimal covering, you should use the adapted algorithm that places meters starting from the end:
// remaining = length (starts at hallway length)
// possible = positions to place meters at, starting by closest to end of hallway
// placed = positions where meters have been placed
boolean solve(float remaining, List<Float> possible, Queue<Float> placed):
if (remaining <= 0):
return true; // problem solved with no additional meters - woo!
else:
// extracts points p up to and including p such that p >= remaining - range
Float next = extractFurthestWithinRange2(remaining, possible, 4.7);
if (next == null):
return false; // no way to cover start of hall: report failure
else:
placed.add(next); // placement decided
return solve(next - 4.7, possible, placed);
To prove that your solution is optimal if it is found, you merely have to prove that it finds the lexicographically last optimal solution.
And you do that by induction on the size of the lexicographically last optimal solution. The case of a zero length floor and no monitor is trivial. Otherwise you demonstrate that you found the first element of the lexicographically last solution. And covering the rest of the line with the remaining elements is your induction step.
Technical note, for this to work you have to be allowed to place monitoring stations outside of the line.

Is there an elegant and efficient way to implement weighted random choices in golang? Details on current implementation and issues inside

tl;dr: I'm looking for methods to implement a weighted random choice based on the relative magnitude of values (or functions of values) in an array in golang. Are there standard algorithms or recommendable packages for this? Is so how do they scale?
Goals
I'm trying to write 2D and 3D markov process programs in golang. A simple 2D example of such is the following: Imagine one has a lattice, and on each site labeled by index (i,j) there are n(i,j) particles. At each time step, the program chooses a site and moves one particle from this site to a random adjacent site. The probability that a site is chosen is proportional to its population n(i,j) at that time.
Current Implementation
My current algorithm, e.g. for the 2D case on an L x L lattice, is the following:
Convert the starting array into a slice of length L^2 by concatenating rows in order, e.g. cdfpop[i L +j]=initialpopulation[i][j].
Convert the 1D slice into a cdf by running a for loop over cdfpop[i]+=cdfpop[i-1].
Generate a two random numbers, Rsite whose range is from 1 to the largest value in the cdf (this is just the last value, cdfpop[L^2-1]), and Rhop whose range is between 1 and 4. The first random number chooses a weighted random site, and the second number a random direction to hop in
Use a binary search to find the leftmost index indexhop of cdfpop that is greater than Rsite. The index being hopped to is either indexhop +-1 for x direction hops or indexhop +- L for y direction hops.
Finally, directly change the values of cdfpop to reflect the hop process. This means subtracting one from (adding one to) all values in cdfpop between the index being hopped from (to) and the index being hopped to (from) depending on order.
Rinse and repeat in for loop. At the end reverse the cdf to determine the final population.
Edit: Requested Pseudocode looks like:
main(){
//import population LxL array
population:= import(population array)
//turn array into slice
for i number of rows{
cdf[ith slice of length L] = population[ith row]
}
//compute cumulant array
for i number of total sites{
cdf[i] = cdf[i-1]+cdf[i]
}
for i timesteps{
site = Randomhopsite(cdf)
cdf = Dohop(cdf, site)
}
Convertcdftoarrayandsave(cdf)
}
Randomhopsite(cdf) site{
//Choose random number in range of the cummulant
randomnumber=RandomNumber(Range 1 to Max(cdf))
site = binarysearch(cdf) // finds leftmost index such that
// cdf[i] > random number
return site
}
Dohop(cdf,site) cdf{
//choose random hop direction and calculate coordinate
randomnumber=RandomNumber(Range 1 to 4)
case{
randomnumber=1 { finalsite= site +1}
randomnumber=2 { finalsite= site -1}
randomnumber=3 { finalsite= site + L}
randomnumber=4 { finalsite= site - L}
}
//change the value of the cumulant distribution to reflect change
if finalsite > site{
for i between site and finalsite{
cdf[i]--
}
elseif finalsite < site{
for i between finalsite and site{
cdf[i]++
}
else {error: something failed}
return cdf
}
This process works really well for simple problems. For this particular problem, I can run about 1 trillion steps on a 1000x 1000 lattice in about 2 minutes on average with my current set up, and I can compile population data to gifs every 10000 or so steps by spinning a go routine without a huge slowdown.
Where efficiency breaks down
The trouble comes when I want to add different processes, with real-valued coefficients, whose rates are not proportional to site population. So say I now have a hopping rate at k_hop *n(i,j) and a death rate (where I simply remove a particle) at k_death *(n(i,j))^2. There are two slow-downs in this case:
My cdf will be double the size (not that big of a deal). It will be real valued and created by cdfpop[i*L+j]= 4 *k_hop * pop[i][j] for i*L+j<L*L and cdfpop[i*L+j]= k_death*math. Power(pop[i][j],2) for L*L<=i*L+j<2*L*L, followed by cdfpop[i]+=cdfpop[i-1]. I would then select a random real in the range of the cdf.
Because of the squared n, I will have to dynamically recalculate the part of the cdf associated with the death process weights at each step. This is a MAJOR slow down, as expected. Timing for this is about 3 microseconds compared with the original algorithm which took less than a nanosecond.
This problem only gets worse if I have rates calculated as a function of populations on neighboring sites -- e.g. spontaneous particle creation depends on the product of populations on neighboring sites. While I hope to work out a way to just modify the cdf without recalculation by thinking really hard, as I try to simulate problems of increasing complexity, I can't help but wonder if there is a universal solution with reasonable efficiency I'm missing that doesn't require specialized code for each random process.
Thanks for reading!

Is there an established method to weigh a weighted mean?

Problem. The weighted mean/average can be used to give differing weight in a mean computation to elements of differing importance. I need to figure out an extension that would in turn 'scale' or 'weigh' the resulting weighted mean with regards to zero, depending on the actual (non-normalized) values of the weights:
if the weights are low, the scaled weighted mean should be close to 0.
if at least some weights are close to the max weight, then the scaled weighted mean should be more or less equivalent with simple weighted mean.
Rationale and details. I need such an extension in order to produce a more sensible mean value in a case where:
the weights are proximity/similarity scores (of interval (0,1)) of the elements (let's call them neighbors for simplicity) of a target element, in some space, and
the values on the neighbors (being averaged) reflect a change in some quality of theirs (because it is assumed to have an effect on the target, if they are close enough)
elements that are further away should have less weight, so using weighted mean seems reasonable - but in some cases, all the neighbors are far away - in these cases, they presumably should have little to no effect on the target (so their mean should reflect this, and be closer to zero).
Reproducible example. This requirement is not met when using a simple weighted means:
# Using R for example code (answer doesn't have to use R)
weighted.mean = function(x, w){
return( sum(x*w)/sum(w) ) # standard way to calculate weighted mean
}
# Example data:
weights1 = c(0.9, 0.1, 0.01) # proximity of neighbors to target
weights2 = c(0.1, 0.1, 0.01) # proximity of neighbors to some other target
values = c(1,2,10) # values on these neighbors
mean(values)
# 4.333333 # not useful, doesn't take into account distance of elements at all
weighted.mean(values, weights1)
# 1.188119 # useful result, reflects distance/weight!
weighted.mean(values, weights2)
# 1.904762 # not useful result - none of them should have any effect, being all distant; the mean should be close to 0 (no effect) instead
What I've tried so far (1) Removing the normalizing sum(weights) business and just taking mean of values*weights:
weighted.mean2 = function(x, w){
return( mean(x*w) )
}
weighted.mean2(values, weights1)
# 0.4 # lower value, but should be viewed relatively in comparison now
weighted.mean2(values, weights2)
# 0.1333333 # makes more sense, low proximity leads to low(er) mean value
What I've tried so far (2) Call weighted mean on 0 and the weighted mean, with the new weights for this vector of length two being 1 (max proximity/identity) and the proximity of the closest neighbor as a scale; the reasoning being that if the target has no close neighbors, then the effect in question should be about 0:
weighted.mean3 = function(x, w){
tmp = weighted.mean(x, w)
maxw = max(w)
return( weighted.mean( c(0, tmp), c(1, maxw)) )
}
weighted.mean3(values, weights1)
# 0.5627931
weighted.mean3(values, weights2)
# 0.1731602 # also makes sense, low proximity leads to low(er) mean value
Both approaches seem to yield a smaller value for the target with distant neighbors, and a comparatively higher value to a target with closer neighbors. However, this feels rather hacky to me, and I'm not sure if there might be cases where either approach might fail - surely there must be a more principled/established algorithm to do something like this out there (perhaps it's not called 'mean' or 'average' though; also, if one of my attempts is equivalent with one, then the answer could just confirm that). Long story short:
Is there an established/published method to weigh/scale a weighted mean in the way I've described above?
Note on previous version of the question: it was initially flagged as too broad, so I rewrote it and applied to reopen, but it was auto-closed as being abandoned; so I rewrote a new question; this one also now has a clear yes or no answer (rationale and/or references beyond a simple yes/no are of course appreciated)

How many thresholds and distance matrix are in Eigenface?

I edited my question trying to make it as short and precise.
I am developing a prototype of a facial recognition system for my Graduation Project. I use Eigenface and my main source is the document Turk and Pentland. It is available here: http://www.face-rec.org/algorithms/PCA/jcn.pdf.
My doubts focus on step 4 and 5.
I can not correctly interpret the number of thresholds: If two types of thresholds, or only one (Notice that the text speaks of two types but uses the same symbol). And again, my question is whether this (or these) threshold(s) is unique and global for all person or if each person has their own default.
I understand the steps to be calculated until an matrix O() of classes with weights or weighted. So this matrix O() is of dimension M'x P. Since M' equal to the amount of eigenfaces chosen and P the number of people.
What follows and confuses me. He speaks of two distances: the distance of a class against another, and also from a distance of one face to another. I call it D1 and D2 respectively. NOTE: In the training set there are M images in total, with F = M / P the number of images per person.
I understand that threshold(s) should be chosen empirically. But there must be a way to approximate. I was initially designing a matrix of distances D1() of dimension PxP. Where the row vector D(i) has the distances from the vector average class O(i) to each O(j), j = 1..P. Ie a "all vs all."
Until I came here, and what follows depends on whether I should actually choose a single global threshold for all. Or if I should be chosen for each individual value. Also not if they are 2 types: one for distance classes, and one for distance faces.
I have a theory as could proceed but not so supported by the concepts of Turk:
Stage Pre-Test:
Gender two matrices of distances D1 and D2:
In D1 would be stored distances between classes, and in D2 distances between faces. This basis of the matrices W and A respectively.
Then, as indeed in the training set are P people, taking the F vectors columns D1 for each person and estimate a threshold T1 was in range [Min, Max]. Thus I will have a T1(i), i = 1..P
Separately have a T2 based on the range [Min, Max] out of all the matrix D2. This define is a face or not.
Step Test:
Buid a test set of image with a 1 image for each known person
Itest = {Itest(1) ... Itest(P)}
For every image Itest(i) test:
Calculate the space face Atest = Itest - Imean
Calculate the weight vector Otest = UT * Atest
Calculating distances:
dist1(j) = distance(Otest, O (j)), j = 1..P
Af = project(Otest, U)
dist2 = distance(Atest, Af)
Evaluate recognition:
MinDist = Min(dist1)
For each j = 1..P
If dist2 > T2 then "not is face" else:
If MinDist <= T1(j) then "Subject identified as j" else "subject unidentified"
Then I take account of TFA and TFR and repeat the test process with different threshold values until I find the best approach gives to each person.
Already defined thresholds can put the system into operation unknown images. The algorithm is similar to the test.
I know I get out of "script" of the official documentation but at least this reasoning is the most logical place my head. I wondered if I could give guidance.
EDIT:
i No more to say that has not already been said and that may help clarify things.
Could anyone tell me if I'm okay tackled with my "theory"? I'm moving into my project, and if this is not the right way would appreciate some guidance and does not work and you wrong.

Simple Weighted Random Walk with Hysteresis

I've already written a solution for this, but it doesn't feel "right", so I'd like some input from others.
The rules are:
Movement is on a 2D grid (Directions arbitrarily labelled N, NE, E, SE, S, SW, W, NW)
Probabilities of moving in a given direction are relative to the direction of travel (i.e. 40% represents ahead), and weighted:
[14%][40%][14%]
[ 8%][ 4%][ 8%]
[ 4%][ 4%][ 4%]
This means with overwhelming probability, travel will continue along its current trajectory. The middle value represents stopping. As an example, if the last move was NW, then the absolute probabilities would read:
[40%][14%][ 8%]
[14%][ 4%][ 4%]
[ 8%][ 4%][ 4%]
The probabilities are approximate - one thing I toyed with was making stopped a static 5% chance outside of the main calculation, which would have altered the probability of any other operation ever so slightly.
My current algorithm is as follows (in simplified pseudocode):
int[] probabilities = [4,40,14,8,4,4,4,8,14]
if move.previous == null:
move.previous = STOPPED
if move.previous != STOPPED:
// Cycle probabilities[1:8] array until indexof(move.previous) = 40%
r = Random % 99
if r < probabilities.sum[0:0]:
move.current = STOPPED
elif r < probabilities.sum[0:1]:
move.current = NW
elif r < probabilities.sum[0:2]:
move.current = NW
...
Reasons why I really dislike this method:
* It forces me to assign specific roles to array indices: [0] = stopped, [1] = North...
* It forces me to operate on a subset of the array when cycling (i.e. STOPPED always remains in place)
* It's very iterative, and therefore, slow. It has to check every value in turn until it gets to the right one. Cycling the array requires up to 4 operations.
* A 9-case if-block (most languages do not allow dynamic switches).
* Stopped has to be special cased in everything.
Things I have considered:
* Circular linked list: Simplifies the cycling (make the pivot always equal north) but requires maintaining a set of pointers, and still involves assigning roles to specific indices.
* Vectors: Really not sure how I'd go about weighting this, plus I'd need to worry about magnitude.
* Matrices: Rotating matrices does not work like that :)
* Use a well-known random walk algorithm: Overkill? Though recommendations are considered.
* Trees: Just thought of this, so no real thought given to it...
So. Does anyone have any bright ideas?
8You have 8 directions and when you hit some direction you have to "rotate this matrix"
But this is just modulo over finite field.
Since you have only 100 integers to pick probability from, you can just putt all integers in list and value from each integers points to index of your direction.
This direction you rotate (modulo addition) in way that it points to move that you have to make.
And than you have one array that have difference that you have to apply to your move.
somethihing like that.
40 numbers 14 numbers 8 numbers
int[100] probab={0,0,0,0,0,0,....,1,1,1,.......,2,2,2,...};
and then
N NE E SE STOP
int[9] next_move={{0,1},{ 1,1},{1,1},{1,-1}...,{0,0}}; //in circle
So you pick
move=probab[randint(100)]
if(move != 8)//if 8 you got stop
{
move=(prevous_move+move)%8;
}
move_x=next_move[move][0];
move_y=next_move[move][1];
Use a more direct representation of direction in your algorithms, something like a (dx, dy) pair, for example.
This allows you to move by just having x += dx; y += dy;
(You can still use the "direction ENUM" + a lookup table if you wish...)
Your next problem is finding a good representation of the "probability table". Since r only ranges from 1 to 99 it might be feasible to just do a dumb array and use prob_table[r] directly.
Then, compute a 3x3 matrix of these probability tables using the method of your choice. It doesn't matter if it is slow because you only do it once.
To get the next direction simply
prob_table = dir_table[curr_dx][curr_dy];
(curr_dx, curr_dy) = get_next_dir(prob_table, random_number());

Resources