As they say, containers do not run on the Hypervisor layer so what happens when we run Container on an AWS EC2 instance? Since EC2 itself is running on a hypervisor layer managed by AWS.
Can someone please help me understand this better?
Thanks,
You probably need to provide more information to back up your question. In the gaps, there are a lot of interpretations for what you are asking, so in a quick return to the basics:
A Hypervisor presents to an Operating System what looks like an independent machine that it can execute on. It might have some weird drivers (aka virtio) but it is just a machine.
A Container presents to a Program what looks like an independent Operating System. It might have some weird IP addresses (127.x.y.z), and stuff, but it looks like it has its own OS.
Note that with [2], the Program can start a whole bunch of other Programs, so as far as it is concerned, it has an entire OS to itself. In reality it is sharing its machine with other Containers, each of which think they have their own machine, and some Root machine which is hosting the Containers.
Containers can host other Containers (well, at least in theory).
Hypervisors can host other Hypervisors (in practise, but your mileage might vary).
So, a Container is an Operating System Instance, running within an Operating System, which might be running within a Virtual Machine on a Hypervisor which is running several Virtual Machines each of which might be running Operating systems which are hosting multiple Containers.
If it strikes you that this is why we can’t have nice things, yes, you are right.
I'm testing the speed of different sorting methods for a CS class, and although our professor said we didn't need to be terribly precise, he still wants us to be careful not to run apps in the background while testing, use a different machine, or do anything to throw the speed of the sorts off.
If I ran the tests in a VM, would the environment outside of the VM affect the speed? Would that help make the tests accurate without having to worry about changes in the apps I have open alongside the VM?
In short, yes.
In most scenarios, hosts share their resources with the VM. If you bog down/freeze/crash the host then the VM will be affected.
For those that have more robust servers with better resources, processes running in the host won't affect the VM as much. Because if you have more resources on the host you can assign better RAM and Virtual Processors to the VM so it runs smoothly.
For instance, let's say our host has 64GB of RAM a processor that has 4 cores and 8 threads (such as an Intel® Xeon® E3-1240 Processor).
We can tell VirtualBox, VMware or Hyper-V to assign 32GB of RAM and 4 virtual processors to the VM, essentially cutting the host's power by half.
With this in mind, any processes you run on the host will usually be separate from the VM but if the processes freeze, crash or cause a hard reboot on the host then the VM will be affected regardless of RAM or virtual processors assigned.
In enterprises environments, a hyper-v server should only be used for that purpose and installing/running a lot of processes in the host is usually frowned upon (such as installing/running DHCP, DNS, Web Server (IIS), etc).
So your professor is right to advise against running processes on the host while testing your VM.
Why is Vagrant not considered an isolation, and Docker is, when Vagrant run a new OS and isolates everything in there? What is meant by isolation when one says: "if you're looking for isolation, use Docker"?
Isolation in the meaning "only isolation" i.e., not virtualization. When you want to run linux apps on linux, we are talking about isolation; when you want to run any app on top of any os, then we talk about virtualization.
Where did you read that Vagrant was not considered an isolation?
Actually, this statement is true as Vagrant is not a Container backend nor a VirtualMachine. It is a manager. It can manage VirtualBox, VMWare and now Docker. Depending on what your needs are, you can achieve isolation through Vagrant via VirtualBox or Docker, but Vagrant does not provide the isolation by itself.
Now that Vagrant supports Docker, you can use it if you need to; however, Docker is very simple by itself and IMHO does not require a tools like Vagrant. When you are playing with Virtual machines, on the other hand, Vagrant is very helpful.
Vagrant is just a tool to create virtual machines (or even cloud instances and Docker containers). Vagrant itself does nothing for isolation. However, the tools it can handle (such as virtual machines or Docker) can be used for isolation (but also for many other things, isolation is just one of many aspects).
For some enlighment about the difference between Docker and VMs see How is Docker different from a normal virtual machine?
Docker: separates the application from the underlying Operating System that it runs on.
Docker virtualise the Operating System for the application.
Vagrant is a virtual machine manager, so let's compare the Virtual Machines to Docker.
Virtual Machines: separates the Operating System from the underlying hardware that it runs on.
virtual machine virtualise the hardware for the operating system.
I am planning to develop an automated test solution with multiple windows machines and multiple ubuntu machines that perform related/interdependent tasks. To start the project, I'd like to have one or two windows machines (virtual) and a few ubuntu machines (virtual) running on a single desktop. It seems likely that I will be pushing a single desktop to the limit here so I am trying to guess if I will have better luck if my host OS is ubuntu or if it is Windows 7. I would be able to use the host OS as one of the machines in my environment. The desktop is some sort of above average Dell, but nothing really impressive.
Does anyone have any insight here? I've worked mostly with VMWare in the past and my host was windows along with my VMs.
Note: VirtualBox is a type-2 hypervisor (it runs on the host OS, not on the hardware like a type-1 hypervisor) and tends to offer weaker performance than, for example, Hyper-V, ESX or XEN (type-1 hypervisors).
Therefore, if performance is a considerable concern, you may squeeze more juice out of Win8 or Windows Server 2012 box running, for example, Hyper-V. Further reading on this here and here (YMMV).
How your environment will run when hosted by a Windows vs. a Linux box is, frankly impossible to tell. I suggest you build your VM's and try dual-booting your machine in Windows and Linux and measuring your scenario. Be sure to have enough RAM in the host to allocate enough working RAM to each VM and enough IO throughput that your host doesn't end up dragging the perf of all VM's down if one VM saturates the machine's IO.
One last note of caution though: Don't completely trust fine-grained perf results measured on VM's - even the best hypervisors cannot truly replicate the perf' characteristics of code running on bare-metal. Treat your measurements as a guideline only.
Measure, then measure again. Measure again just to be sure ... and THEN tweak your config and re-measure, measure, measure ;)
My $0.02:
If its VirtualBox you are using I would go with Ubuntu for certain. I have an AMD 945 Phenom with 16GB of Ram with 12.04LTS 64bit . I can usually have 2 VM's running Windows and / or Ubuntu guests and never consume more than 7 GBs of RAM . If your running them in a testing solution you could expect to probably see 12 maybe 13 GBs of RAM, but the CPU might be your problem. My AMD Phenom runs great, but would be maxed out for sure. I use VMWare at work and on my Laptop and would recommend that if you were running a Windows Host. I also have VMWare on my Ubuntu host, but it just does not run as well as it does on Windows., at least for me.
Recently the buzz of virtualization has reached my workplace where developers trying out virtual machines on their computers. Earlier I've been hearing from several different developers about setting up virtual machine in their desktop computers for sake of keeping their development environments clean.
There are plenty of Virtual Machine software products in the market:
Microsoft Virtual PC
Sun VirtualBox
VMWare Workstation or Player
Parallell Inc's Parallells Desktop
I'm interested to know how you use virtualization effectively in your work. My question is how do you use Virtual Machines for day-to-day development and for what reason?
I just built a real beefy machine at home so that I could run multiple VMs at once. My case is probably extreme though, but here is my logic for doing so.
Testing
When I test, particularly a desktop app, I typically create multiple VMs, one for each platform that my software should run on (Windows 2000/XP/Vista etc). If 32 and 64 bit flavors are available, I also build one of each. I also play with the VM hardware settings (e.g. lots of RAM, little RAM, 1 core, 2 core, etc). I found plenty of little bugs this way, that definitely would have made it into the wild had I not used this approach.
This approach also makes it easy to play with different software scenarios (what happens if the user installing the program doesn't have .NET 3.5 sp1? What happens if he doesn't have XXX component? etc?
Development
When I develop, I have one VM running my database servers (SQL2000/2005/2008). This is for two reasons. First, it is more realistic. In a production environment your app is probably not running on the same box as the db. Why not replicate it when you develop? Also, when I'm not developing (remember this is also my home machine), do I really need to have all of those database services running? Yes, I could turn them on and off manually, but its so much easier to switch a VM on.
Clients
If I want to show a client some web work I've done, I can put just a single VM into the DMZ and he can log into the VM and play with the web project, while the rest of my network/computer is safe.
Compatibility
Vista64 is now my main machine. Any older hardware/software I own will not play nicely with that OS. My solutions is to have Windows XP 32 as a VM for all of those items.
Here's something that hasn't been mentioned yet.
Whenever a project enter maintenance mode (aka abandonded), I create a VM with all the tools , libraries, and source code necessary to build the project. That way if I have to come back to it a year later, I won't bet bit in the ass by any upgraded tools or libraries on my workstation.
When I started at my current company, most support/dev/PM staff would run Virtual PC with 1-3 VMs on their desktop for testing.
After a few months I put together a proposal and now we use a VMware ESXi server running a pool of virtual machines (all on 24/7) with different environments for our support staff to test customer problems and reproduce issues on. We have VMs of Windows 2000/XP/Vista with each of Office 2000/2002/2003/2007 installed (so that's 12 VMs) plus some more general test VMs, some Server 2003/2008 machines running Citrix, Terminal Services, etc. Basically most of the time when we hit a new customer configuration that we need to debug, and it's likely other customers also have that configuration, I'll setup a VM for it. (eg. We're only using three 64-bit VMs at the moment - mostly it's 32bit)
On top of that the same server runs a XP VM that I use for building installers (InstallShield, WiX) debugging (VS 2005) and localization (Lingobit) as well as a second VM that our developers use for automated testing (TestComplete).
The development and installer VM have been allocated higher priority and are both configured as dual-cpu VMs with 1Gb memory. The remaining VMs have equal priority and 256-1Gb RAM.
Everything runs on a dual-quad-core Xeon with 8Gb of RAM running ESXi and hardware raid (4x1Tb RAID10)
For little more than US$2.5k investment we've improved productivity 10 fold (imagine the downtime while a support lackie installs an older version of office on their desktop to replicate a customer problem, or the time that I can't use my desktop because we're building installers). Next step will be to double the RAM to 16Gb as we add more memory hungry Server 2008 and Vista VMs.
We still have the odd VM on our desktops (I've got localized versions of Windows, Ubuntu and Windows 7 running under VMware Workstation for example) but the commonly/heavily used configurations have been offloaded to a dedicated server that we can all remotely connect into. Much, much easier.
Virtualisation (with snapshots or non-persistent disks) is really useful for testing software installation in a known clean configuration (i.e. nothing left over from previous buggy installs of your software).
Having your development box on a single file (with a Virtual Machine) will make it much easier to backup and restore if an issue occurs.
Other than that, you can also carry your portable development box around different machines, since you aren't restricted on that single particular machine you usually work on.
Not only that, but you can test on different Operating Systems at once, with a single OS installed on a each Virtual Machine file you have.
Believe me, this will save quite a hassle when doing the jobs I mentioned above.
Another nice use case for VMs is to create a virtual network of machines. For example you can bring up machines running the different tiers of your application stack, each running in its own VM. Think of it as a poor man's datacentre.
These VMs can also appear available on your physical network, so you can use RDP or similar to get a remote terminal session with them.
You can have a beefy machine (lots of memory) running these VMs, while you access them remotely from another machine such as a laptop, or whichever machine you have with the best screen.
I use a VM under Windows to run Linux. Even though there's already a version of emacs for windows, using it in Linux just feels more gratifying for some reason.
Maintaining shelved computers
I have the situation where schools in my region are closed down but their finance system has to be maintained for up to 2 years to ensure all outstanding bills are paid. This used to be handled by maintaining the hardware from the mothballed schools which had some problems:
This wasted scarce hardware resources and took up a lot of physical space.
Finance officers had to be physically present at the hardware to work on each system.
Today I host each mothballed school on its own virtual box inside a single physical host. Each individual system is accessed by rdp on the IP number of the host, but with its own port number and the original security of each school is maintained.
Finance officers can now work on the mothballed schools without having to travel to where they are physically located, there is more physical space in the server room and backup of all the mothballed schools at once is a simple automated process.
With each mothballed school in its own vbox there is no way for cross contamination of data between systems. Many thousands of dollars worth of hardware is also freed up for redeployment.
Virtualisation appears to be the perfect solution to this problem.
I used the Virtualization approach using VMWare Server when the task in front of me was to test a clustered environment of WebSphere Application Server. After setting up VMWare Server i created a new virtual machine and did all the software installations that i would need like WebSphere App Server, Oracle, WebSphere Commerce etc, after which i shutdown the VM, and copied over the virtual hard disk image to two different files, one as a clone VM and another as a backup.
Created a new VM and assigned the one of the copied disk images, so i got two systems up and running now which allowed me to test the same scenario of a clustered environment. I took a snapshot of the VM through VMware and if i goofed up with any activities i would revert the changes to the snapshot taken thereby going to the previous state and increasing my productivity instead of having to find out what to reverse. The backup disk image can also be used if i need to revert to a very old state, instead of having to start from scratch.
The snapshot functionality which exists in both VMWare and Microsoft's Virtual PC/Server is good enough to consider Virtualization for scenarios where you think you might do breaking changes, which may not be that easy to revert.
From what I know, there is nothing like Parallels on Mac, but rather for work instead of testing.
The integration (with "coherence", your VM is not running "in a window" of your host system, all programs in the guest system have their proper window in the host system) is splendid and let's you fill all (ALL!) gaps:
My coworker has it configured that Outlook (there is nothing like Outlook for MacOsX) in Windows pops up when he clicks on a "mailto:"-link on a web page, browsed with Firefox on Mac !
In the other direction, if he get's send a PDF, he doubleclicks the attachment in Outlook (in Windows) which opens the PDF-File in the Mac-buildin PDF-viewer.
VirtualBox also offers this window-separation possibility (at least when windows is running in the VM on Linux), which is really useful for work.
For testing etc. of course, there is nothing like a cleanly separated environment.
We have a physical server dedicated to hosting virtual machines in our development environment. The virtual machines are brought up and torn down on a regular basis and are used for testing software on known Standard Operating Environments.
It is also really helpful when we want an application to run on a domain that is different to the development environment.
Also, the organisation I am working for are in the planning stage to create a large virtual testing ground. This will be a large grid of machines, sitting on it's own network, and all of the organisations' internal staff, contractors and third-party vendors will be able to stage their software for testing purposes prior to implementing into the production environment. The virtual machines will reflect the physical machines in the production environment.
It sounds great, but everyone's a bit skeptical: This is a Government organisation... Bureaucracy and red-tape will probably turn this into a big waste of time and money.
If we are using Virtual machine (vpc 2007,Virtual Server 2005,VMWare application etc..)
1.We can run multiple operating systems(windows98,2000,XP,Vista,Windows Server 2003,2008,Windows 7/linux/solaris) on a single server
2.We can Reduce hardware costs & Data Center Space
3.We can Reduce power & AC cooling cost.
4.We can reduce admin resource,
5.We can reduce Application Cost
6.We can run ADS/DNS/DHCP/Exchange/SQL/Sharepoint Server/File Server...etc