I am working on Prolog and I came across the below program. When I execute this program with a query for example: mysterious([2,3,4,5,6,7,8],L), it gives me the answer 20. I don't understand the flow of getting this result. Can anyone help me to understand this code?
How does it produce the answer 20 for the above mentioned query?
mysterious([],0).
mysterious([X],X).
mysterious([X,Y|Xs], Res) :-
mysterious(Xs, Res1),
Res is X + Res1.
Because this is such a basic program, I will give you a hint. First off, this:
foo([]).
foo([X]).
foo([X,Y|Rest]) :-
foo(Rest).
could be also written as:
foo([]).
foo([First|Rest]) :-
bar(Rest, First).
bar([], Last).
bar([This|Rest], Prev) :-
foo(Rest).
It is unnecessarily verbose, but more explicit. In your case, however, it makes something obvious:
mysterious([], 0).
mysterious([X|Rest], Result) :-
myst_1(Rest, X, Result).
myst_1([], Result, Result).
myst_1([_Y|Rest], X, Result) :-
mysterious(Rest, Result1),
Result is X + Result1.
Something which you did not mention in your question is that the compiler must have given you a "singleton variable" warning on the Y in the last clause of mysterious/2. This should have been a strong indication of what is going on already.
I can help you by commenting lines, maybe you will understand the prolog a little more, let's start:
Prolog programs describe relations, defined by means of clauses. Pure Prolog is restricted to Horn clauses. There are two types of clauses: facts and rules. (by wikipedia)
% comment in prolog starts with '%'
mysterious([],0). % its called 'predicate', something like functions in imperative
% languages. it has two arguments: [], and 0. and it is ended
% by dot (.). Clauses with empty bodies are called facts.
% (this is fact).
mysterious([X],X). % is actually a "rule" that says, "if the list has one element,
% then the result is just that element". (by #mbratch)
mysterious([X,Y|Xs], Res) :- % now, when argument 1 is list which looks like
% [SomeElement, NextElement|LastElements],
mysterious(Xs, Res1), % call 'mysterious' with only LastElements
% and variable Res1 (skip first two elements of list)
Res is X + Res1. % then add first element to Res1.
% it calculates the sum of every second element of list, beginning on first.
Related
Hello I would like to ask a doubt I have with the following code:
principio([],[]).
principio([H],[H]).
principio([H,_|_],[H]).
principio([H,H|C],P) :-
principio([H|C],R),P=[H|R].
I would like a way to get from:
?- principio([222,333,101,202,12,222,13,222],X).
X = [222,222,222]
But in this moment I get just the head:
X = [222]
So, to keep it clear I'd like: all successive occurrences of the first element as a list.
My doubt is what does this assignment P=[H|R] why not to put just:
principio([H,H|C],P) :-
principio([H|C],P)
Also, how would you try to modify this to get the result I asked for?
Thank you
Here is two ways how you can narrow down the problem. 1st, start from an unexpectedly failing query. 2nd, start from a query that should fail but rather succeeds.
1st Diagnose unexpected incompleteness
Determine a most specific failing query
?- principio([222,333,101,202,12,222,13,222],[222,222,222]).
false.
Generalize the query
... as much as possible. I could do this manually, or I could let Prolog do the work for me. Here I use library(diadem):
?- use_module(diadem).
true.
?- principio([222,333,101,202,12,222,13,222],[222,222,222]).? Gen.
Gen = principio([222, 333|_], [_, _|_])
; Gen = (dif(A100, B100), principio([A100, B100|_], [_, _|_]))
; ... .
In other words: Not only does your original query fail, but also this generalization fails! Here, we only insist that the first two elements are different, and that the resulting list contains at least two elements — no matter which!
?- dif(X, Y), principio([X,Y|_],[_,_|_]).
Generalize your program
:- op(950, fy, *).
* _P_0.
principio([], _/*[]*/).
principio([_H], _/*[H]*/).
principio([H,_|_],[H]).
principio([H,H|C],P) :-
* principio([H|C],R),
* P=[H|R].
The error must reside in the little remaining part of your program. No need to read any further!
The problem is that for a list starting with two different elements you only have the clause principio([H,_|_],[H]).. So this part has to be generalized somehow.
2nd Diagnose unexpected unsoundness
Another way of finding the error would be to start with the unexpected solution:
?- principio([222,333,101,202,12,222,13,222],[222]).
true. % incorrect !!
And then reduce the size of the query as much as possible.
?- principio([222,222],[222]).
true. % incorrect !!
Now, specialize your program inserting false as long as above query succeeds:
principio([],[]) : - false.
principio([H],[H]) :- false.
principio([H,_|_],[H]).
principio([H,H|C],P) :- false,
principio([H|C],R),
P=[H|R].
The remaining visible part is the culprit! We have to revise it. What it says is:
Any list starting with two elements corresponds to the list with the first element only.
principio([],[]).
principio([H],[H]).
principio([H,D|Xs], [H|Hs]) :-
dif(H,D),
principio([H|Xs],[H|Hs]).
principio([H,H|Xs],[H|Hs]) :-
principio([H|Xs],Hs).
In addition to the very nice answer provided by #false (+s(0)), I would point out the possibility to use DCGs for the task. They usually yield easily readable code when describing lists (see comments beside the grammar rules):
principio([H|T],Hs) :-
phrase(heads([H|T],H),Hs).
heads([],_H) --> % in the empty list
[]. % there's no element matching H
heads([H|Xs],H) --> % if the head of the list matches H
[H], % it's in the list
heads(Xs,H). % same for the tail
heads([X|Xs],H) --> % if the head of the list is
{dif(X,H)}, % different from H it's not in the list
heads(Xs,H). % same for the tail
Thus your example query yields the desired result:
?- principio([222,333,101,202,12,222,13,222],X).
X = [222,222,222] ? ;
no
What I have to do is, write a predicate Multiplication/3, whose first argument is an integer, second argument is a list, and the third argument is the result of multiplying the integer with the list, for example:
?-Multiplication(3,[2,7,4],Result).
should return
Result = [6,21,12].
Here's my code:
Multiplication(X,[],Result).
Multiplication(X,[Head|Tail],Result) :-
Y is X*Head,
append([Result], [Y], L),
append([],L,Result), // HERE
Multiplication(X,Tail,Result).
And I get the following error:
Domain error: 'acyclic_term ' expected, found '#(lists:append([],S_1,S_1),[S_1=[S_1,1]])'
on the second append call.
If anyone knows why I receive the error, how to fix it or another way to solve this, I'm open to ideas.
Your two goals append([Result], [Y], L), append([],L,Result) are exactly the same as:
L = [Result,Y], L = Result.
or even simpler:
L = [L,Y]
which would result either in silent failure or an infinite term. Instead, your Prolog produces an error, so that you can correct your program.
In your original code:
Multiplication(X,[Head|Tail],Result) :-
Y is X*Head,
append([Result], [Y], L),
append([],L,Result), // HERE
Multiplication(X,Tail,Result).
You're getting a "cycle" because you're appending Result to something to get L, then appending something to L to get Result. That's not good. You also have a capitalized predicate name, which is a syntax error. (I assume that, since you ran your code, it wasn't capitalized in the original version.)
You're new proposed solution is overly complicated. Why do you need the 4th argument? Also, your base case for return (which is return(X, [], Result) doesn't make sense, as it has to singleton variables. The use of append/3 is overkill since recursion handles the iteration through the list elements for you.
Starting from the top, you have a common pattern in Prolog where you want to run a query on corresponding elements of two or more lists. A simple recursive solution would look something like this:
multiplication(_, [], []). % Multiplying anything by the empty list is the empty list
multiplication(M, [X|Xs], [XX|XXs]) :-
XX is M * X,
multiplication(M, Xs, XXs).
Another way to implement this kind of pattern in Prolog is with maplist/3. You can first define the query on corresponding elements:
multiply(X, Y, Product) :- Product is X * Y.
Then use maplist/3:
multiplication(M, List, Result) :-
maplist(multiply(M), List, Result).
Maplist will do a call(multiply(M), ...) on each corresponding pair of elements of List and Result.
I edited the code and came up with this:
multiplication(X,[],Result,Result).
multiplication(X,[Head|Tail],List,Result) :-
Y is X*Head,
append(List, [Y], L),
multiplication(X,Tail,L,Result).
return(X,[],Result).
return(X,L,Result) :-
multiplication(X,L,_,Result).
and the query:
return(2,[1,2],Result).
After the first run, it seems to return Result as it should be, but it runs forever.
I am a newbie to prolog and am trying to write a program which returns the atoms in a well formed propositional formula. For instance the query ats(and(q, imp(or(p, q), neg(p))), As). should return [p,q] for As. Below is my code which returns the formula as As. I dont know what to do to split the single F in ats in the F1 and F2 in wff so wff/2 never gets called. Please I need help to proceed from here. Thanks.
CODE
logical_atom( A ) :-
atom( A ),
atom_codes( A, [AH|_] ),
AH >= 97,
AH =< 122.
wff(A):- ground(A),
logical_atom(A).
wff(neg(A)) :- ground(A),wff(A).
wff(or(F1,F2)) :-
wff(F1),
wff(F2).
wff(and(F1,F2)) :-
wff(F1),
wff(F2).
wff(imp(F1,F2)) :-
wff(F1),
wff(F2).
ats(F, As):- wff(F), setof(F, logical_atom(F), As).
First, consider using a cleaner representation: Currently, you cannot distinguish atoms by a common functor. So, wrap them for example in a(Atom).
Second, use a DCG to describe the relation between a well-formed formula and the list of its atoms, like in:
wff_atoms(a(A)) --> [A].
wff_atoms(neg(F)) --> wff_atoms(F).
wff_atoms(or(F1,F2)) --> wff_atoms(F1), wff_atoms(F2).
wff_atoms(and(F1,F2)) --> wff_atoms(F1), wff_atoms(F2).
wff_atoms(imp(F1,F2)) --> wff_atoms(F1), wff_atoms(F2).
Example query and its result:
?- phrase(wff_atoms(and(a(q), imp(or(a(p), a(q)), neg(a(p))))), As).
As = [q, p, q, p].
This should do what you want. It extracts the unique set of atoms found in any arbitrary prolog term.
I'll leave it up to you, though, to determine what constitutes a "well formed propositional formula", as you put it in your problem statement (You might want to take a look at DCG's for parsing and validation).
The bulk of the work is done by this "worker predicate". It simply extracts, one at a time via backtracking, any atoms found in the parse tree and discards anything else:
expression_atom( [T|_] , T ) :- % Case #1: head of list is an ordinary atom
atom(T) , % - verify that the head of the list is an atom.
T \= [] % - and not an empty list
. %
expression_atom( [T|_] , A ) :- % Case #2: head of listl is a compound term
compound(T) , % - verify that the head of the list is a compound term
T =.. [_|Ts] , % - decompose it, discarding the functor and keeping the arguments
expression_atom(Ts,A) % - recurse down on the term's arguments
. %
expression_atom( [_|Ts] , A ) :- % Finally, on backtracking,
expression_atom(Ts,A) % - we simply discard the head and recurse down on the tail
. %
Then, at the top level, we have this simple predicate that accepts any [compound] prolog term and extracts the unique set of atoms found within by the worker predicate via setof/3:
expression_atoms( T , As ) :- % To get the set of unique atoms in an arbitrary term,
compound(T) , % - ensure that's its a compound term,
T =.. [_|Ts] , % - decompose it, discarding the functor and keeping the arguments
setof(A,expression_atom(Ts,A),As) % - invoke the worker predicate via setof/3
. % Easy!
I'd approach this problem using the "univ" operator =../2 and explicit recursion. Note that this solution will not generate and is not "logically correct" in that it will not process a structure with holes generously, so it will produce different results if conditions are reordered. Please see #mat's comments below.
I'm using cuts instead of if statements for personal aesthetics; you would certainly find better performance with a large explicit conditional tree. I'm not sure you'd want a predicate such as this to generate in the first place.
Univ is handy because it lets you treat Prolog terms similarly to how you would treat a complex s-expression in Lisp: it converts terms to lists of atoms. This lets you traverse Prolog terms as lists, which is handy if you aren't sure exactly what you'll be processing. It saves me from having to look for your boolean operators explicitly.
atoms_of_prop(Prop, Atoms) :-
% discard the head of the term ('and', 'imp', etc.)
Prop =.. [_|PropItems],
collect_atoms(PropItems, AtomsUnsorted),
% sorting makes the list unique in Prolog
sort(AtomsUnsorted, Atoms).
The helper predicate collect_atoms/2 processes lists of terms (univ only dismantles the outermost layer) and is mutually recursive with atoms_of_prop/2 when it finds terms. If it finds atoms, it just adds them to the result.
% base case
collect_atoms([], []).
% handle atoms
collect_atoms([A|Ps], [A|Rest]) :-
% you could replace the next test with logical_atom/1
atom(A), !,
collect_atoms(Ps, Rest).
% handle terms
collect_atoms([P|Ps], Rest) :-
compound(P), !, % compound/1 tests for terms
atoms_of_prop(P, PAtoms),
collect_atoms(Ps, PsAtoms),
append(PAtoms, PsAtoms, Rest).
% ignore everything else
collect_atoms([_|Ps], Rest) :- atoms_of_prop(Ps, Rest).
This works for your example as-is:
?- atoms_of_prop(ats(and(q, imp(or(p, q), neg(p))), As), Atoms).
Atoms = [p, q].
I need some help here with Prolog.
So I have this function between that evaluates if an element is between other two.
What I need now is a function that evaluates if a member is not between other two, even if it is the same as one of them.
I tried it :
notBetween(X,Y,Z,List):-right(X,Y,List),right(Z,Y,List). // right means Z is right to Y and left the same for the left
notBetween(X,Y,Z,List):-left(X,Y,List),left(Z,Y,List).
notBetween(X,Y,Z,List):-Y is Z;Y is X.
I am starting with Prolog so maybe it is not even close to work, so I would appreciate some help!
When it come to negation, Prolog behaviour must be handled more carefully, because negation is 'embedded' in the proof engine (see SLD resolution to know a little more about abstract Prolog). In your case, you are listing 3 alternatives, then if one will not be true, Prolog will try the next. It's the opposite of what you need.
There is an operator (\+)/2, read not. The name has been chosen 'on purpose' different than not, to remember us that it's a bit different from the not we use so easily during speaking.
But in this case it will do the trick:
notBeetwen(X,Y,Z,List) :- \+ between(X,Y,Z,List).
Of course, to a Prolog programmer, will be clearer the direct use of \+, instead of a predicate that 'hides' it - and requires inspection.
A possibile definition of between/4 with basic lists builtins
between(X,Y,Z,List) :- append(_, [X,Y,Z|_], List) ; append(_, [Z,Y,X|_], List).
EDIT: a simpler, constructive definition (minimal?) could be:
notBetween(X,Y,Z, List) :-
nth1(A, List, X),
nth1(B, List, Y),
nth1(C, List, Z),
( B < A, B < C ; B > A, B > C ), !.
EDIT: (==)/2 works with lists, without side effects (it doesn't instance variables). Example
1 ?- [1,2,3] == [1,2,3].
true.
2 ?- [1,2,X] == [1,2,X].
true.
3 ?- [1,2,Y] == [1,2,X].
false.
I starting to study for my upcoming exam and I'm stuck on a trivial prolog practice question which is not a good sign lol.
It should be really easy, but for some reason I cant figure it out right now.
The task is to simply count the number of odd numbers in a list of Int in prolog.
I did it easily in haskell, but my prolog is terrible. Could someone show me an easy way to do this, and briefly explain what you did?
So far I have:
odd(X):- 1 is X mod 2.
countOdds([],0).
countOdds(X|Xs],Y):-
?????
Your definition of odd/1 is fine.
The fact for the empty list is also fine.
IN the recursive clause you need to distinguish between odd numbers and even numbers. If the number is odd, the counter should be increased:
countOdds([X|Xs],Y1) :- odd(X), countOdds(Xs,Y), Y1 is Y+1.
If the number is not odd (=even) the counter should not be increased.
countOdds([X|Xs],Y) :- \+ odd(X), countOdds(Xs,Y).
where \+ denotes negation as failure.
Alternatively, you can use ! in the first recursive clause and drop the condition in the second one:
countOdds([X|Xs],Y1) :- odd(X), !, countOdds(Xs,Y), Y1 is Y+1.
countOdds([X|Xs],Y) :- countOdds(Xs,Y).
In Prolog you use recursion to inspect elements of recursive data structs, as lists are.
Pattern matching allows selecting the right rule to apply.
The trivial way to do your task:
You have a list = [X|Xs], for each each element X, if is odd(X) return countOdds(Xs)+1 else return countOdds(Xs).
countOdds([], 0).
countOdds([X|Xs], C) :-
odd(X),
!, % this cut is required, as rightly evidenced by Alexander Serebrenik
countOdds(Xs, Cs),
C is Cs + 1.
countOdds([_|Xs], Cs) :-
countOdds(Xs, Cs).
Note the if, is handled with a different rule with same pattern: when Prolog find a non odd element, it backtracks to the last rule.
ISO Prolog has syntax sugar for If Then Else, with that you can write
countOdds([], 0).
countOdds([X|Xs], C) :-
countOdds(Xs, Cs),
( odd(X)
-> C is Cs + 1
; C is Cs
).
In the first version, the recursive call follows the test odd(X), to avoid an useless visit of list'tail that should be repeated on backtracking.
edit Without the cut, we get multiple execution path, and so possibly incorrect results under 'all solution' predicates (findall, setof, etc...)
This last version put in evidence that the procedure isn't tail recursive. To get a tail recursive procedure add an accumulator:
countOdds(L, C) :- countOdds(L, 0, C).
countOdds([], A, A).
countOdds([X|Xs], A, Cs) :-
( odd(X)
-> A1 is A + 1
; A1 is A
),
countOdds(Xs, A1, Cs).