Sort prime factors in ascending order Scheme - scheme

I am new to Scheme and I want to sort the prime factors of a number into ascending order. I found this code, but it does not sort.
(define (primefact n)
(let loop ([n n] [m 2] [factors (list)])
(cond [(= n 1) factors]
[(= 0 (modulo n m)) (loop (/ n m) 2 (cons m factors))]
[else (loop n (add1 m) factors)])))
Can you please help.
Thank you

I would say it sorts, but descending. If you want to sort the other way, just reverse the result:
(cond [(= n 1) (reverse factors)]

Usually when you need something sorted in the order you get them you can
cons them like this:
(define (primefact-asc n)
(let recur ((n n) (m 2))
(cond ((= n 1) '())
((= 0 (modulo n m)) (cons m (recur (/ n m) m))) ; replaced 2 with m
(else (recur n (+ 1 m))))))
Note that this is not tail recursive since it needs to cons the result, but since the amount of factors in an answer is few (thousands perhaps) it won't matter much.
Also, since it does find the factors in order you don't need to start at 2 every round but the number you found.

Which dialect of Scheme is used?
Three hints:
You need only to test for divisors less equal as the square-root of your Number.
a * b = N ; a < b ---> a <= sqrt( N ).
If you need all Prime-Numbers less some Number, you should use the sieve of eratothenes. See Wikipedia.
Before you start to write a program, look in Wikipedia.
If

Related

Finding primes up to a certain number in Racket

I'm learning Racket (with the HtDP course) and it's my first shot at a program in a functional language.
I've tried to design a function that finds all primes under a certain input n using (what I think is) a functional approach to the problem, but the program can get really slow (86 seconds for 100.000, while my Python, C and C++ quickly-written solutions take just a couple of seconds).
The following is the code:
;; Natural Natural -> Boolean
;; Helper function to avoid writing the handful (= 0 (modulo na nb))
(define (divisible na nb) (= 0 (modulo na nb)))
;; Natural ListOfNatural -> Boolean
;; n is the number to check, lop is ALL the prime numbers less than n
(define (is-prime? n lop)
(cond [(empty? lop) true]
[(divisible n (first lop)) false]
[ else (is-prime? n (rest lop))]))
;; Natural -> ListOfNatural
(define (find-primes n)
(if (= n 2)
(list 2)
(local [(define LOP (find-primes (sub1 n)))]
(if (is-prime? n LOP)
(append LOP (list n))
LOP))))
(time (find-primes 100000))
I'm using the divisible function instead of just plowing the rest in because I really like to have separated functions when they could be of use in another part of the program. I also should probably define is-prime? inside of find-primes, since no one will ever call is-prime? on a number while also giving all the prime numbers less than that number.
Any pointers on how to improve this?
Here are some ideas for improving the performance, the procedure now returns in under two seconds for n = 100000.
(define (is-prime? n lop)
(define sqrtn (sqrt n))
(if (not (or (= (modulo n 6) 1) (= (modulo n 6) 5)))
false
(let loop ([lop lop])
(cond [(or (empty? lop) (< sqrtn (first lop))) true]
[(zero? (modulo n (first lop))) false]
[else (loop (rest lop))]))))
(define (find-primes n)
(cond [(<= n 1) '()]
[(= n 2) '(2)]
[(= n 3) '(2 3)]
[else
(let loop ([lop '(2 3)] [i 5])
(cond [(> i n) lop]
[(is-prime? i lop) (loop (append lop (list i)) (+ i 2))]
[else (loop lop (+ i 2))]))]))
Some of the optimizations are language-related, others are algorithmic:
The recursion was converted to be in tail position. In this way, the recursive call is the last thing we do at each step, with nothing else to do after it - and the compiler can optimize it to be as efficient as a loop in other programming languages.
The loop in find-primes was modified for only iterating over odd numbers. Note that we go from 3 to n instead of going from n to 2.
divisible was inlined and (sqrt n) is calculated only once.
is-prime? only checks up until sqrt(n), it makes no sense to look for primes after that. This is the most important optimization, instead of being O(n) the algorithm is now O(sqrt(n)).
Following #law-of-fives's advice, is-prime? now skips the check when n is not congruent to 1 or 5 modulo 6.
Also, normally I'd recommend to build the list using cons instead of append, but in this case we need the prime numbers list to be constructed in ascending order for the most important optimization in is-prime? to work.
Here's Óscar López's code, tweaked to build the list in the top-down manner:
(define (is-prime? n lop)
(define sqrtn (sqrt n))
(let loop ([lop lop])
(cond [(or (empty? lop) (< sqrtn (mcar lop))) true]
[(zero? (modulo n (mcar lop))) false]
[else (loop (mcdr lop))])))
(define (find-primes n)
(let* ([a (mcons 3 '())]
[b (mcons 2 a)])
(let loop ([p a] [i 5] [d 2] ; d = diff +2 +4 +2 ...
[c 2]) ; c = count of primes found
(cond [(> i n) c]
[(is-prime? i (mcdr a))
(set-mcdr! p (mcons i '()))
(loop (mcdr p) (+ i d) (- 6 d) (+ c 1))]
[else (loop p (+ i d) (- 6 d) c )]))))
Runs at about ~n1.25..1.32, empirically; compared to the original's ~n1.8..1.9, in the measured range, inside DrRacket (append is the culprit of that bad behaviour). The "under two seconds" for 100K turns into under 0.05 seconds; two seconds gets you well above 1M (one million):
; (time (length (find-primes 100000))) ; with cons times in milliseconds
; 10K 156 ; 20K 437 ; 40K 1607 ; 80K 5241 ; 100K 7753 .... n^1.8-1.9-1.7 OP's
; 10K 62 ; 20K 109 ; 40K 421 ; 80K 1217 ; 100K 2293 .... n^1.8-1.9 Óscar's
; mcons:
(time (find-primes 2000000))
; 100K 47 ; 200K 172 ; 1M 1186 ; 2M 2839 ; 3M 4851 ; 4M 7036 .... n^1.25-1.32 this
; 9592 17984 78498 148933 216816 283146
It's still just a trial division though... :) The sieve of Eratosthenes will be much faster yet.
edit: As for set-cdr!, it is easy to emulate any lazy algorithm with it... Otherwise, we could use extendable arrays (lists of...), for the amortized O(1) snoc/append1 operation (that's lots and lots of coding); or maintain the list of primes split in two (three, actually; see the code below), building the second portion in reverse with cons, and appending it in reverse to the first portion only every so often (specifically, judging the need by the next prime's square):
; times: ; 2M 1934 ; 3M 3260 ; 4M 4665 ; 6M 8081 .... n^1.30
;; find primes up to and including n, n > 2
(define (find-primes n)
(let loop ( [k 5] [q 9] ; next candidate; square of (car LOP2)
[LOP1 (list 2)] ; primes to test by
[LOP2 (list 3)] ; more primes
[LOP3 (list )] ) ; even more primes, in reverse
(cond [ (> k n)
(append LOP1 LOP2 (reverse LOP3)) ]
[ (= k q)
(if (null? (cdr LOP2))
(loop k q LOP1 (append LOP2 (reverse LOP3)) (list))
(loop (+ k 2)
(* (cadr LOP2) (cadr LOP2)) ; next prime's square
(append LOP1 (list (car LOP2)))
(cdr LOP2) LOP3 )) ]
[ (is-prime? k (cdr LOP1))
(loop (+ k 2) q LOP1 LOP2 (cons k LOP3)) ]
[ else
(loop (+ k 2) q LOP1 LOP2 LOP3 ) ])))
;; n is the number to check, lop is list of prime numbers to check it by
(define (is-prime? n lop)
(cond [ (null? lop) #t ]
[ (divisible n (car lop)) #f ]
[ else (is-prime? n (cdr lop)) ]))
edit2: The easiest and simplest fix though, closest to your code, was to decouple the primes calculations of the resulting list, and of the list to check divisibility by. In your
(local [(define LOP (find-primes (sub1 n)))]
(if (is-prime? n LOP)
LOP is used as the list of primes to check by, and it is reused as part of the result list in
(append LOP (list n))
LOP))))
immediately afterwards. Breaking this entanglement enables us to stop the generation of testing primes list at the sqrt of the upper limit, and thus it gives us:
;times: ; 1M-1076 2M-2621 3M-4664 4M-6693
; n^1.28 ^1.33 n^1.32
(define (find-primes n)
(cond
((<= n 4) (list 2 3))
(else
(let* ([LOP (find-primes (inexact->exact (floor (sqrt n))))]
[lp (last LOP)])
(local ([define (primes k ps)
(if (<= k lp)
(append LOP ps)
(primes (- k 2) (if (is-prime? k LOP)
(cons k ps)
ps)))])
(primes (if (> (modulo n 2) 0) n (- n 1)) '()))))))
It too uses the same is-prime? code as in the question, unaltered, as does the second variant above.
It is slower than the 2nd variant. The algorithmic reason for this is clear — it tests all numbers from sqrt(n) to n by the same list of primes, all smaller or equal to the sqrt(n) — but in testing a given prime p < n it is enough to use only those primes that are not greater than sqrt(p), not sqrt(n). But it is the closest to your original code.
For comparison, in Haskell-like syntax, under strict evaluation,
isPrime n lop = null [() | p <- lop, rem n p == 0]
-- OP:
findprimes 2 = [2]
findprimes n = lop ++ [n | isPrime n lop]
where lop = findprimes (n-1)
= lop ++ [n | n <- [q+1..n], isPrime n lop]
where lop = findprimes q ; q = (n-1)
-- 3rd:
findprimes n | n < 5 = [2,3]
findprimes n = lop ++ [n | n <- [q+1..n], isPrime n lop]
where lop = findprimes q ;
q = floor $ sqrt $ fromIntegral n
-- 2nd:
findprimes n = g 5 9 [2] [3] []
where
g k q a b c
| k > n = a ++ b ++ reverse c
| k == q, [h] <- b = g k q a (h:reverse c) []
| k == q, (h:p:ps) <- b = g (k+2) (p*p) (a++[h]) (p:ps) c
| isPrime k a = g (k+2) q a b (k:c)
| otherwise = g (k+2) q a b c
The b and c together (which is to say, LOP2 and LOP3 in the Scheme code) actually constitute a pure functional queue a-la Okasaki, from which sequential primes are taken and appended at the end of the maintained primes prefix a (i.e. LOP1) now and again, on each consecutive prime's square being passed, for a to be used in the primality testing by isPrime.
Because of the rarity of this appending, its computational inefficiency has no impact on the time complexity of the code overall.

How to decrement a value in Scheme?

I have a procedure that can find the n smallest primes larger than from
(define (primes_range from to n)
(for ([i (in-range from to)])
(if (> n 0)
(cond ((prime? i) (display i)
(- n 1)))
false)))
I add a parameter n to the procedure primes_range and decrement it during the execution only if a prime was found.
But n not changed. How to fix that?
The idiomatic Scheme way to write this function is to use recursion:
(define (primes-range from to n)
(cond ((>= from to) '())
((<= n 0) '())
((prime? from) (cons from (primes-range (+ from 1) to (- n 1))))
(else (primes-range (+ from 1) to n))))
You can easily spell this out in English:
Base cases:
A prime range where the from is equal or greater to to is empty.
A prime range where n is 0 or less is empty.
Recursive cases:
If from is a prime, then the prime range is from, prepended to the result of calling primes-range starting from (+ from 1) and with (- n 1) elements.
Otherwise, the result is calling primes-range starting from (+ from 1) (still with n elements).

I get stuck in my recursion

I have a problem with my Racket programm.
I want to add this function to my programm but I get stuck in my recursion:
Here the function:
ggt: N x N -> N
(m,n) ->
ggT(m-n,n) if m > n
ggT(m,n-m) if n > m
m if m=n
(define (ggT m n)
(cond
[(> m n)(ggT (- m n)] ;; If m > n the programm should go recursiv back and change
;; the value of m to m-n. But I know that this wont work this way
[(< m n)(ggT (- n m)] ;; Same Problem here
[else m]))
How do I start a real recursion?
Try this:
(define (ggT m n)
(cond [(> m n) (ggT (- m n) n)]
[(< m n) (ggT m (- n m))]
[else m]))
You just have to pass the parameters in the correct order when calling the ggT function, remember that ggT receives two parameters, but you were passing only one.
Your function ggT takes two parameters, but you are only passing 1 in. I think you want something like this:
(define (ggT m n)
(cond
[(> m n)(ggT (- m n) n)]
[(< m n)(ggT m (- n m))]
[else m]))

Different ways to calculate number

I need to write a function that will return the number of ways in which can be n (n is a natural number) written as the sum of natural numbers.
For example: 4 can be written as 1+1+1+1, 1+1+2, 2+2, 3+1 and 4.
I have written a function that returns the number of all the options, but does not take into account that the possibilities 1 + 1 + 2 and 2 + 1 + 1 (and all similar cases) are equal. So for n=4 it returns 8 instead of 5.
Here is my function:
(define (possibilities n)
(define (loop i)
(cond [(= i n) 1]
[(> i n) 0]
[(+ (possibilities (- n i)) (loop (+ i 1)))]))
(cond [(< n 1) 0]
[#t (loop 1)]))
Could you please help me with fixing my function, so it will work the way it should be. Thank you.
This is a well-known function, it's called the partition function P, its possible values are referenced as A000041 in the on-line encyclopedia of integer sequences.
One simple solution (not the fastest!) would be to use this helper function, which denotes the number of ways of writing n as a sum of exactly k terms:
(define (p n k)
(cond ((> k n) 0)
((= k 0) 0)
((= k n) 1)
(else
(+ (p (sub1 n) (sub1 k))
(p (- n k) k)))))
Then we just have to add the possible results, being careful with the edge cases:
(define (possibilities n)
(cond ((negative? n) 0)
((zero? n) 1)
(else
(for/sum ([i (in-range (add1 n))])
(p n i)))))
For example:
(map possibilities (range 11))
=> '(1 1 2 3 5 7 11 15 22 30 42)

weirdness in scheme

I was trying to implement Fermat's primality test in Scheme.
I wrote a procedure fermat2(initially called fermat1) which returns true
when a^p-1 congruent 1(mod p) (please read it correctly guys!!)
a
every prime p number should satisfy the procedure (And hence Fermat's little theorem .. )
for any a
But when I tried to count the number of times this procedure yields true for a fixed number of trials ... ( using countt procedure, described in code) I got shocking results ans
So I changed the procedure slightly (I don't see any logical change .. may be I'm blind) and named it fermat1(replacing older fermat1 , now old fermat1 ->fermat2) and it worked .. the prime numbers passed the test all the times ...
why on earth the procedure fermat2 called less number of times ... what is actually wrong??
if it is wrong why don't I get error ... instead that computation is skipped!!(I think so!)
all you have to do , to understand what I'm trying to tell is
(countt fermat2 19 100)
(countt fermat1 19 100)
and see for yourself.
Code:
;;Guys this is really weird
;;I might not be able to explain this
;;just try out
;;(countt fermat2 19 100)
;;(countt fermat1 19 100)
;;compare both values ...
;;did you get any error using countt with fermat2,if yes please specify why u got error
;;if it was because of reminder procedure .. please tell your scheme version
;;created on 6 mar 2011 by fedvasu
;;using mit-scheme 9.0 (compiled from source/microcode)
;; i cant use a quote it mis idents (unfriendly stack overflow!)
;;fermat-test based on fermat(s) little theorem a^p-1 congruent to 1 (mod p) p is prime
;;see MIT-SICP,or Algorithms by Vazirani or anyother number theory book
;;this is the correct logic of fermat-test (the way it handles 0)
(define (fermat1 n)
(define (tryout a x)
;; (display "I've been called\n")
(= (remainder (fast-exp a (- x 1)) x) 1))
;;this exercises the algorithm
;;1+ to avoid 0
(define temp (random n))
(if (= temp 0)
(tryout (1+ temp) n)
(tryout temp n)))
;;old fermat-test
;;which is wrong
;;it doesnt produce any error!!
;;the inner procedure is called only selective times.. i dont know when exactly
;;uncomment the display line to see how many times tryout is called (using countt)
;;i didnt put any condition when it should be called
;;rather it should be every time fermat2 is called
;;how is it so??(is it to avoid error?)
(define (fermat2 n)
(define (tryout a x)
;; (display "I've been called\n")
(= (remainder (fast-exp a (- x 1)) x) 1))
;;this exercises the algorithm
;;1+ to avoid 0
(tryout (1+ (random n)) n))
;;this is the dependency procedure for fermat1 and fermat2
;;this procedure calculates base^exp (exp=nexp bcoz exp is a keyword,a primitive)
;;And it is correct :)
(define (fast-exp base nexp)
;;this is iterative procedure where a*b^n = base^exp is constant always
;;A bit tricky though
(define (logexp a b n)
(cond ((= n 0) a);;only at the last stage a*b^n is not same as base^exp
((even? n) (logexp a (square b) (/ n 2)))
(else (logexp (* a b) b (- n 1)))))
(logexp 1 base nexp))
;;utility procedure which takes a procedure and its argument and an extra
;; argument times which tells number of times to call
;;returns the number of times result of applying proc on input num yielded true
;;counting the number times it yielded true
;;procedure yields true for fixed input,
;;by calling it fixed times)
;;uncommenting display line will help
(define (countt proc num times)
(define (pcount p n t c)
(cond ((= t 0)c)
((p n );; (display "I'm passed by fermat1\n")
(pcount p n (- t 1) (+ c 1)));;increasing the count
(else c)))
(pcount proc num times 0))
I had real pain .. figuring out what it actually does .. please follow the code and tell why this dicrepieancies?
Even (countt fermat2 19 100) called twice returns different results.
Let's fix your fermat2 since it's shorter. Definition is: "If n is a prime number and a is any positive integer less than n, then a raised to the nth power is congruent to a modulo n.". That means f(a, n) = a^n mod n == a mod n. Your code tells f(a, n) = a^(n-1) mod n == 1 which is different. If we rewrite this according to definition:
(define (fermat2 n)
(define (tryout a x)
(= (remainder (fast-exp a x) x)
(remainder a x)))
(tryout (1+ (random n)) n))
This is not correct yet. (1+ (random n)) returns numbers from 1 to n inclusive, while we need [1..n):
(define (fermat2 n)
(define (tryout a x)
(= (remainder (fast-exp a x) x)
(remainder a x)))
(tryout (+ 1 (random (- n 1))) n))
This is correct version but we can improve it's readability. Since you're using tryout only in scope of fermat2 there is no need in parameter x to pass n - latter is already bound in scope of tryout, so final version is
(define (fermat n)
(define (tryout a)
(= (remainder (fast-exp a n) n)
(remainder a n)))
(tryout (+ 1 (random (- n 1)))))
Update:
I said that formula used in fermat2 is incorrect. This is wrong because if a*k = b*k (mod n) then a = b (mod n). Error as Vasu pointed was in generating random number for test.

Resources