Reversing an integer - scheme

I am trying to write a function which takes an input number and outputs the number in reverse order.
Ie:
Input -> 25
Output -> 52
Input -> 125
Output -> 521
I am new to lisp, if its helpful here is the working function in c++
function.cpp
int revs(int rev, int n)
{
if (n <= 0)
return rev;
return revs((rev * 10) + (n % 10), n/10);
}
I have written it in Racket as follows:
(define (revs rev n)
(if (<= n 0)
rev
(revs (+ (* rev 10) (modulo n 10)) (/ n 10))))
But when I run it with (revs 0 125) I get this error:
modulo: contract violation
expected: integer?
given: 25/2
argument position: 1st
other arguments...:
10
Certainly I am doing something incorrect here, but I am unsure of what I am missing.

The division operator / doesn't do integer division, but general division, so when you call, e.g., (/ 25 2), you don't get 12 or 13, but rather the rational 25/2. I think you'd want quotient instead, about which the documentation has:
procedure (quotient n m) → integer?
n : integer?
m : integer?
Returns (truncate (/ n m)). Examples:
> (quotient 10 3)
3
> (quotient -10.0 3)
-3.0
> (quotient +inf.0 3)
quotient: contract violation
expected: integer?
given: +inf.0
argument position: 1st
other arguments...:
3

Treating the operation lexicographically:
#lang racket
(define (lexicographic-reverse x)
(string->number
(list->string
(reverse
(string->list
(number->string x))))))
Works[1] for any of Racket's numerical types.
[edit 1] "Works," I realized, is context dependent and with a bit of testing shows the implicit assumptions of the operation. My naive lexicographic approach makes a mess of negative integers, e.g. (lexicographic-reverse -47) will produce an error.
However, getting an error rather than -74 might be better when if I am reversing numbers for lexicographic reasons rather than numerical ones because it illuminates the fact that the definition of "reversing a number" is arbitrary. The reverse of 47 could just as well be -74 as 74 because reversing is not a mathematical concept - even though it might remind me of XOR permutation.
How the sign is handled is by a particular reversing function is arbitrary.
#lang racket
;; Reversing a number retains the sign
(define (arbitrary1 x)
(define (f n)
(string->number
(list->string
(reverse
(string->list
(number->string n))))))
(if (>= x 0)
(f x)
(- (f (abs x)))))
;; Reversing a number reverses the sign
(define (arbitrary2 x)
(define (f n)
(string->number
(list->string
(reverse
(string->list
(number->string n))))))
(if (>= x 0)
(- (f x))
(f (abs x))))
The same considerations extend to Racket's other numerical type notations; decisions about reversing exact, inexact, complex, are likewise arbitrary - e.g. what is the reverse of IEEE +inf.0 or +nan.0?

Here is my solution for this problem
(define (reverseInt number)
(define (loop number reversedNumber)
(if (= number 0)
reversedNumber
(let ((lastDigit (modulo number 10)))
(loop (/ (- number lastDigit) 10) (+ (* reversedNumber 10) lastDigit)))))
(loop number 0))
Each time we multiply the reversed number by 10 and add the last digit of number.
I hope it makes sense.

A R6RS version (will work with R7RS with a little effort)
#!r6rs
(import (rnrs)
(srfi :8))
(define (numeric-reverse n)
(let loop ((acc 0) (n n))
(if (zero? n)
acc
(receive (q r) (div-and-mod n 10)
(loop (+ (* acc 10) r) q)))))
A Racket implementation:
#!racket
(require srfi/8)
(define (numeric-reverse n)
(let loop ((acc 0) (n n))
(if (zero? n)
acc
(receive (q r) (quotient/remainder n 10)
(loop (+ (* acc 10) r) q)))))

With recursion, you can do something like:
#lang racket
(define (reverse-num n)
(let f ([acc 0]
[n n])
(cond
[(zero? n) acc]
[else (f (+ (* acc 10) (modulo n 10)) (quotient n 10))])))

Related

Geometric Series function in Scheme language

Im trying to learn scheme and Im having trouble with the arithmetic in the Scheme syntax.
Would anyone be able to write out a function in Scheme that represents the Geometric Series?
You have expt, which is Scheme power procedure. (expt 2 8) ; ==> 256 and you have * that does multiplication. eg. (* 2 3) ; ==> 6. From that you should be able to make a procedure that takes a n and produce the nth number in a specific geometric series.
You can also produce a list with the n first if you instead of using expt just muliply in a named let, basically doing the expt one step at a time and accumulate the values in a list. Here is an example of a procedure that makes a list of numbers:
(define (range from to)
(let loop ((n to) (acc '())
(if (< n from)
acc
(loop (- 1 n) (cons n acc)))))
(range 3 10) ; ==> (3 4 5 6 7 8 9 10)
Notice I'm doing them in reverse. If I cannot do it in reverse I would in the base case do (reverse acc) to get the right order as lists are always made from end to beginning. Good luck with your series.
range behaves exactly like Python's range.
(define (range from (below '()) (step 1) (acc '()))
(cond ((null? below) (range 0 from step))
((> (+ from step) below) (reverse acc))
(else (range (+ from step) below step (cons from acc)))))
Python's range can take only one argument (the upper limit).
If you take from and below as required arguments, the definition is shorter:
(define (range from below (step 1) (acc '()))
(cond ((> (+ from step) below) (reverse acc))
(else (range (+ from step) below step (cons from acc)))))
Here is an answer, in Racket, that you probably cannot submit as homework.
(define/contract (geometric-series x n)
;; Return a list of x^k for k from 0 to n (inclusive).
;; This will be questionable if x is not exact.
(-> number? natural-number/c (listof number?))
(let gsl ((m n)
(c (expt x n))
(a '()))
(if (zero? m)
(cons 1 a)
(gsl (- m 1)
(/ c x)
(cons c a)))))

Easy function to commatize a number in string in Racket

To add commas to a number in string, can there be a simple function for common situation use? I found one method but it seems very complex though comprehensive: https://rosettacode.org/wiki/Commatizing_numbers#Racket
I simply want to have a function which works as follows:
(addcommas 1234567890)
"1,234,567,890"
(It is slightly surprising that Racket, which has many high level functions, does not have a built-in function for this common requirement).
You can try with this:
(define (addcommas n)
(define (split n acc)
(if (< (abs n) 1000)
(cons n acc)
(let-values ([(quot rem) (quotient/remainder n 1000)])
(split quot (cons (abs rem) acc)))))
(apply ~a (split n '()) #:separator ","))
(addcommas -2332342390)
;; -> "-2,332,342,390"
If you want to format real numbers, since they have a binary representation, and the conversion can be imprecise, you have to add a precision parameter which specifies the number of digits after the point:
(define (addcommas-real n precision)
(let* ((int-part (exact-truncate n))
(float-part (exact-truncate (* (- n int-part) (expt 10 precision)))))
(~a (addcommas int-part) "." (abs float-part))))
(addcommas-real -2332342390.34 2)
;; -> "-2,332,342,390.34"
(addcommas-real -2332342390.34 5)
;; -> "-2,332,342,390.34000"

Elegant Way Of Accounting For "A" When Converting Strings To 26-Ary And Back?

I need to convert strings to 26-ary and then be able to convert them back.
My current code is:
(define (26-ary-word s)
(let ([len (string-length s)])
(let f ([n 0]
[acc (+
(- (char->integer (string-ref s 0)) 97)
1)]) ; adding 1 so that all strings start with 'b'
(if (< n len)
(f (add1 n) (+ (* acc 26) (- (char->integer (string-ref s n)) 97)))
acc))))
(define (word-ary-26 n)
(let f ([n (/ (- n (modulo n 26)) 26)]
[acc (cons (integer->char (+ (modulo n 26) 97)) '())])
(if (> n 0)
(f (/ (- n (modulo n 26)) 26) (cons (integer->char (+ (modulo n 26) 97)) acc))
(list->string (cdr acc))))) ; remove "b" from front of string
I add 1 to acc to start with, and remove the "b" at the end. This is because multiplying "a" - 97 by 26 is still 0.
This is already ugly, but it doesn't even work. "z" is recorded as "701" when it's in the first position (26^2), which is translated back as "az".
I can add another if clause detecting if the first letter is z, but that's really ugly. Is there any way to do this that sidesteps this issue?
(if (and (= n 0) (= acc 26))
(f (add1 n) 51)
(f (add1 n) (+ (* acc 26) (- (char->integer (string-ref s n)) 97))))
This is the ugly edge case handling code I've had to use.
Honestly, I'm not entirely sure what your code is doing, but either way, it's far more complicated than it needs to be. Converting a base-26 string to an integer is quite straightforward just by using some higher-order constructs:
; (char-in #\a #\z) -> (integer-in 0 25)
(define (base-26-char->integer c)
(- (char->integer c) (char->integer #\a)))
; #rx"[a-z]+" -> integer?
(define (base-26-string->integer s)
(let ([digits (map base-26-char->integer (string->list s))])
(for/fold ([sum 0])
([digit (in-list digits)])
(+ (* sum 26) digit))))
By breaking the problem into two functions, one that converts individual characters and one that converts an entire string, we can easily make use of Racket's string->list function to simplify the implementation.
The inverse conversion is actually slightly trickier to make elegant using purely functional constructs, but it becomes extremely trivial with an extra helper function that "explodes" an integer into its digits in any base.
; integer? [integer?] -> (listof integer?)
(define (integer->digits i [base 10])
(reverse
(let loop ([i i])
(if (zero? i) empty
(let-values ([(q r) (quotient/remainder i base)])
(cons r (loop q)))))))
Then the implementation of the string-generating functions becomes obvious.
; (integer-in 0 25) -> (char-in #\a #\z)
(define (integer->base-26-char i)
(integer->char (+ i (char->integer #\a))))
; integer? -> #rx"[a-z]+"
(define (integer->base-26-string i)
(list->string (map integer->base-26-char (integer->digits i 26))))

Why does this Miller-Rabin Procedure in Scheme works when the code seems to be wrong?

I am working through SICP. In exercise 1.28 about the Miller-Rabin test. I had this code, that I know is wrong because it does not follow the instrcuccions of the exercise.
(define (fast-prime? n times)
(define (even? x)
(= (remainder x 2) 0))
(define (miller-rabin-test n)
(try-it (+ 1 (random (- n 1)))))
(define (try-it a)
(= (expmod a (- n 1) n) 1))
(define (expmod base exp m)
(cond ((= exp 0) 1)
((even? exp)
(if (and (not (= exp (- m 1))) (= (remainder (square exp) m) 1))
0
(remainder (square (expmod base (/ exp 2) m)) m)))
(else
(remainder (* base (expmod base (- exp 1) m)) m))))
(cond ((= times 0) true)
((miller-rabin-test n) (fast-prime? n (- times 1)))
(else false)))
In it I test if the square of the exponent is congruent to 1 mod n. Which according
to what I have read, and other correct implementations I have seen is wrong. I should test
the entire number as in:
...
(square
(trivial-test (expmod base (/ exp 2) m) m))
...
The thing is that I have tested this, with many prime numbers and large Carmicheal numbers,
and it seems to give the correct answer, though a bit slower. I don't understand why this
seems to work.
Your version of the function "works" only because you are lucky. Try this experiment: evaluate (fast-prime? 561 3) a hundred times. Depending on the random witnesses that your function chooses, sometimes it will return true and sometimes it will return false. When I did that I got 12 true and 88 false, but you may get different results, depending on your random number generator.
> (let loop ((k 0) (t 0) (f 0))
(if (= k 100) (values t f)
(if (fast-prime? 561 3)
(loop (+ k 1) (+ t 1) f)
(loop (+ k 1) t (+ f 1)))))
12
88
I don't have SICP in front of me -- my copy is at home -- but I can tell you the right way to perform a Miller-Rabin primality test.
Your expmod function is incorrect; there is no reason to square the exponent. Here is a proper function to perform modular exponentiation:
(define (expm b e m) ; modular exponentiation
(let loop ((b b) (e e) (x 1))
(if (zero? e) x
(loop (modulo (* b b) m) (quotient e 2)
(if (odd? e) (modulo (* b x) m) x)))))
Then Gary Miller's strong pseudoprime test, which is a strong version of your try-it test for which there is a witness a that proves the compositeness of every composite n, looks like this:
(define (strong-pseudoprime? n a) ; strong pseudoprime base a
(let loop ((r 0) (s (- n 1)))
(if (even? s) (loop (+ r 1) (/ s 2))
(if (= (expm a s n) 1) #t
(let loop ((r r) (s s))
(cond ((zero? r) #f)
((= (expm a s n) (- n 1)) #t)
(else (loop (- r 1) (* s 2)))))))))
Assuming the Extended Riemann Hypothesis, testing every a from 2 to n-1 will prove (an actual, deterministic proof, not just a probabilistic estimate of primality) the primality of a prime n, or identify at least one a that is a witness to the compositeness of a composite n. Michael Rabin proved that if n is composite, at least three-quarters of the a from 2 to n-1 are witnesses to that compositeness, so testing k random bases demonstrates, but does not prove, the primality of a prime n to a probability of 4−k. Thus, this implementation of the Miller-Rabin primality test:
(define (prime? n k)
(let loop ((k k))
(cond ((zero? k) #t)
((not (strong-pseudoprime? n (random (+ 2 (- n 3))))) #f)
(else (loop (- k 1))))))
That always works properly:
> (let loop ((k 0) (t 0) (f 0))
(if (= k 100) (values t f)
(if (prime? 561 3)
(loop (+ k 1) (+ t 1) f)
(loop (+ k 1) t (+ f 1)))))
0
100
I know your purpose is to study SICP rather than to program primality tests, but if you're interested in programming with prime numbers, I modestly recommend this essay at my blog, which discusses the Miller-Rabin test, among other topics. You should also know there are better (faster, less likely to report erroneous result) primality tests available than randomized Miller-Rabin.
It seems to me, you still got correct answer, because in each iteration of expmod you check conditions for previous iteration. You could try to debug exp value using display function inside expmod. Really, your code is not very different from this one.

Scheme prime numbers

this is possibly much of an elementary question, but I'm having trouble with a procedure I have to write in Scheme. The procedure should return all the prime numbers less or equal to N (N is from input).
(define (isPrimeHelper x k)
(if (= x k) #t
(if (= (remainder x k) 0) #f
(isPrimeHelper x (+ k 1)))))
(define ( isPrime x )
(cond
(( = x 1 ) #t)
(( = x 2 ) #t)
( else (isPrimeHelper x 2 ) )))
(define (printPrimesUpTo n)
(define result '())
(define (helper x)
(if (= x (+ 1 n)) result
(if (isPrime x) (cons x result) ))
( helper (+ x 1)))
( helper 1 ))
My check for prime works, however the function printPrimesUpTo seem to loop forever. Basically the idea is to check whether a number is prime and put it in a result list.
Thanks :)
You have several things wrong, and your code is very non-idiomatic. First, the number 1 is not prime; in fact, is it neither prime nor composite. Second, the result variable isn't doing what you think it is. Third, your use of if is incorrect everywhere it appears; if is an expression, not a statement as in some other programming languages. And, as a matter of style, closing parentheses are stacked at the end of the line, and don't occupy a line of their own. You need to talk with your professor or teaching assistant to clear up some basic misconceptions about Scheme.
The best algorithm to find the primes less than n is the Sieve of Eratosthenes, invented about twenty-two centuries ago by a Greek mathematician who invented the leap day and a system of latitude and longitude, accurately measured the circumference of the Earth and the distance from Earth to Sun, and was chief librarian of Ptolemy's library at Alexandria. Here is a simple version of his algorithm:
(define (primes n)
(let ((bits (make-vector (+ n 1) #t)))
(let loop ((p 2) (ps '()))
(cond ((< n p) (reverse ps))
((vector-ref bits p)
(do ((i (+ p p) (+ i p))) ((< n i))
(vector-set! bits i #f))
(loop (+ p 1) (cons p ps)))
(else (loop (+ p 1) ps))))))
Called as (primes 50), that returns the list (2 3 5 7 11 13 17 19 23 29 31 37 41 43 47). It is much faster than testing numbers for primality by trial division, as you are attempting to do. If you must, here is a proper primality checker:
(define (prime? n)
(let loop ((d 2))
(cond ((< n (* d d)) #t)
((zero? (modulo n d)) #f)
(else (loop (+ d 1))))))
Improvements are possible for both algorithms. If you are interested, I modestly recommend this essay on my blog.
First, it is good style to express nested structure by indentation, so it is visually apparent; and also to put each of if's clauses, the consequent and the alternative, on its own line:
(define (isPrimeHelper x k)
(if (= x k)
#t ; consequent
(if (= (remainder x k) 0) ; alternative
;; ^^ indentation
#f ; consequent
(isPrimeHelper x (+ k 1))))) ; alternative
(define (printPrimesUpTo n)
(define result '())
(define (helper x)
(if (= x (+ 1 n))
result ; consequent
(if (isPrime x) ; alternative
(cons x result) )) ; no alternative!
;; ^^ indentation
( helper (+ x 1)))
( helper 1 ))
Now it is plainly seen that the last thing that your helper function does is to call itself with an incremented x value, always. There's no stopping conditions, i.e. this is an infinite loop.
Another thing is, calling (cons x result) does not alter result's value in any way. For that, you need to set it, like so: (set! result (cons x result)). You also need to put this expression in a begin group, as it is evaluated not for its value, but for its side-effect:
(define (helper x)
(if (= x (+ 1 n))
result
(begin
(if (isPrime x)
(set! result (cons x result)) ) ; no alternative!
(helper (+ x 1)) )))
Usually, the explicit use of set! is considered bad style. One standard way to express loops is as tail-recursive code using named let, usually with the canonical name "loop" (but it can be any name whatever):
(define (primesUpTo n)
(let loop ((x n)
(result '()))
(cond
((<= x 1) result) ; return the result
((isPrime x)
(loop (- x 1) (cons x result))) ; alter the result being built
(else (loop (- x 1) result))))) ; go on with the same result
which, in presence of tail-call optimization, is actually equivalent to the previous version.
The (if) expression in your (helper) function is not the tail expression of the function, and so is not returned, but control will always continue to (helper (+ x 1)) and recurse.
The more efficient prime?(from Sedgewick's "Algorithms"):
(define (prime? n)
(define (F n i) "helper"
(cond ((< n (* i i)) #t)
((zero? (remainder n i)) #f)
(else
(F n (+ i 1)))))
"primality test"
(cond ((< n 2) #f)
(else
(F n 2))))
You can do this much more nicely. I reformated your code:
(define (prime? x)
(define (prime-helper x k)
(cond ((= x k) #t)
((= (remainder x k) 0) #f)
(else
(prime-helper x (+ k 1)))))
(cond ((= x 1) #f)
((= x 2) #t)
(else
(prime-helper x 2))))
(define (primes-up-to n)
(define (helper x)
(cond ((= x 0) '())
((prime? x)
(cons x (helper (- x 1))))
(else
(helper (- x 1)))))
(reverse
(helper n)))
scheme#(guile-user)> (primes-up-to 20)
$1 = (2 3 5 7 11 13 17 19)
Please don’t write Scheme like C or Java – and have a look at these style rules for languages of the lisp-family for the sake of readability: Do not use camel-case, do not put parentheses on own lines, mark predicates with ?, take care of correct indentation, do not put additional whitespace within parentheses.

Resources