how to convert interface{} to object in golang? - go

type Human struct {
Name string
}
func (t *Human) GetInfo() {
fmt.Println(t.Name)
}
func main() {
var p1 interface{}
p1 = Human{Name:"John"}
//p1.GetInfo()
}
now,p1's typs is interface{}, but i want get a Human object.
How to do? i can call p1.GetInfo()

You can use a type assertion to unwrap the value stored in an interface variable. From your example, p1.(Human) would extract a Human value from the variable, or panic if the variable held a different type.
But if your aim is to call methods on whatever is held in the interface variable, you probably don't want to use a plain interface{} variable. Instead, declare the methods you want for the interface type. For instance:
type GetInfoer interface {
GetInfo()
}
func main() {
var p1 GetInfoer
p1 = &Human{Name:"John"}
p1.GetInfo()
}
Go will then make sure you only assign a value with a GetInfo method to p1, and make sure that the method call invokes the method appropriate to the type stored in the variable. There is no longer a need to use a type assertion, and the code will work with any value implementing the interface.

You can do a type assertion inline:
p1.(*Human).GetAll()
http://play.golang.org/p/ldtVrPnZ79
Or you can create a new variable to hold a Human type.

Related

Can I use an interface as a parameter when writing a function which could end up being passed any kind of struct?

I am trying to write a function which could end up taking any kind of struct... let's say it is like this :
func setDate(s timestamp, data interface{}){
data.Date = timestamp
}
I realize that I wouldn't need a function to set this value in real life, I am trying to learn more about how interfaces work, etc.
You could approach it that way, but then inside setDate() you would need to use reflection to set the Date field. Go is a statically typed language, so if the (static) type of data is interface{} (which says nothing about it), you can't really do anything useful with it (you can't refer to its Date field, because there is no guarantee that its value has a Date field).
Instead you should define a HasDate interface which contains a single method:
type HasDate interface {
SetDate(s time.Time)
}
The ability to set the date. And your function should expect a value of this interface type:
func setDate(s time.Time, data HasDate) {
data.SetDate(s)
}
Anyone who implements this HasDate interface can be passed to your setDate() function. Note that in Go implementing interfaces is implicit: there is no declaration of intent. This means any type that has a SetDate(time.Time) method implements this HasDate interface without even knowing this interface exists.
This is an example type that implements it (more precisely its pointer *MyType):
type MyType struct {
date time.Time
}
func (mt *MyType) SetDate(s time.Time) {
mt.date = s
}
Example testing it (try it on the Go Playground):
mt := &MyType{}
setDate(time.Now(), mt)
fmt.Println(mt.date)

How to cast interface{} back into its original struct?

I need a way to dynamically cast a struct/interface back to its original object.
I can add methods / functions inside. basically I need something like this:
MyStruct => Interface{} => MyStruct
When on the final conversion I don't know anything about the original struct besides what come inside the struct, so I can't just so:
a.(MyStruct)
You need to know at least the possible types it could be. There's a couple cases, 1. You think you might know what it is. 2. You have a list of possible types it could be, 3. Your code knows nothing about the underlying types.
If you think you know it, you can use type assertion to convert back to the original struct type.
...
package main
import (
"fmt"
)
type MyStruct struct {
Thing string
}
func (s *MyStruct) Display() {
fmt.Println(s.Thing)
}
type Thingable interface {
Display()
}
func main() {
s := &MyStruct{
Thing: "Hello",
}
// print as MyThing
s.Display()
var thinger Thingable
thinger = s
// print as thingable interface
thinger.Display()
// convert thinger back to MyStruct
s2 := thinger.(*MyStruct) // this is "type assertion", you're asserting that thinger is a pointer to MyStruct. This will panic if thinger is not a *MyStruct
s2.Display()
}
You can see this in action here: https://play.golang.org/p/rL12Lrpqsyu
Note if you want to test the type without panicking if you're wrong, do s2, ok := thinger.(*MyStruct). ok will be true if it was successful and false otherwise.
if you want to test your interface variable against a bunch of types, use a switch: (scroll to bottom)
...
package main
import (
"fmt"
"reflect"
)
type MyStruct struct {
Thing string
}
type MyStruct2 struct {
Different string
}
func (s *MyStruct) Display() {
fmt.Println(s.Thing)
}
func (s *MyStruct2) Display() {
fmt.Println(s.Different)
}
type Thingable interface {
Display()
}
func main() {
s := &MyStruct{
Thing: "Hello",
}
// print as MyThing
s.Display()
var thinger Thingable
thinger = s
// print as thingable interface
thinger.Display()
// try to identify thinger
switch t := thinger.(type) {
case *MyStruct:
fmt.Println("thinger is a *MyStruct. Thing =", t.Thing)
case *MyStruct2:
fmt.Println("thinger is a *MyStruct2. Different =", t.Different)
default:
fmt.Println("thinger is an unknown type:", reflect.TypeOf(thinger))
}
}
You can try that out here https://play.golang.org/p/7NEbwB5j6Is
If you really don't know anything about the underlying types, you'll have to expose the things you need through interface functions and call those. Chances are you can do this without knowing anything about the underlying type. If all else fails, you can use the reflect package to introspect your interface object and gather information about it. this is how the json package reads json text and returns populated structs—though this is an advanced topic and expect to sink a lot of time into it if you go this route. it’s best to hide reflection code inside a package with a clean interface(ie the package api).
No: as mentioned in this thread
Go is neither covariant nor contravariant. Types are either equal or they aren't.
You have to either take the structs apart and deal with the pieces, or use reflection.
Type assertions are only "assertions", not "coercions" of any kind.
See also this thread, which reminds us that:
A pointer is one kind of type.
A struct is another kind of type.
An integer is another kind of type.
A floating point number is another kind of type.
A boolean is another kind of type.
The principle of an interface concerns the methods attached to a type T, not what type T is.
An interface type is defined by a set of methods.
Any value that implements the methods can be assigned to an interface value of that type.
That would make the conversion from interface to concrete type quite difficult to do.

How to set default values in Go structs

There are multiple answers/techniques to the below question:
How to set default values to golang structs?
How to initialize structs in golang
I have a couple of answers but further discussion is required.
One possible idea is to write separate constructor function
//Something is the structure we work with
type Something struct {
Text string
DefaultText string
}
// NewSomething create new instance of Something
func NewSomething(text string) Something {
something := Something{}
something.Text = text
something.DefaultText = "default text"
return something
}
Force a method to get the struct (the constructor way).
From this post:
A good design is to make your type unexported, but provide an exported constructor function like NewMyType() in which you can properly initialize your struct / type. Also return an interface type and not a concrete type, and the interface should contain everything others want to do with your value. And your concrete type must implement that interface of course.
This can be done by simply making the type itself unexported. You can export the function NewSomething and even the fields Text and DefaultText, but just don't export the struct type something.
Another way to customize it for you own module is by using a Config struct to set default values (Option 5 in the link). Not a good way though.
One problem with option 1 in answer from
Victor Zamanian is that if the type isn't exported then users of your package can't declare it as the type for function parameters etc. One way around this would be to export an interface instead of the struct e.g.
package candidate
// Exporting interface instead of struct
type Candidate interface {}
// Struct is not exported
type candidate struct {
Name string
Votes uint32 // Defaults to 0
}
// We are forced to call the constructor to get an instance of candidate
func New(name string) Candidate {
return candidate{name, 0} // enforce the default value here
}
Which lets us declare function parameter types using the exported Candidate interface.
The only disadvantage I can see from this solution is that all our methods need to be declared in the interface definition, but you could argue that that is good practice anyway.
There is a way of doing this with tags, which
allows for multiple defaults.
Assume you have the following struct, with 2 default
tags default0 and default1.
type A struct {
I int `default0:"3" default1:"42"`
S string `default0:"Some String..." default1:"Some Other String..."`
}
Now it's possible to Set the defaults.
func main() {
ptr := &A{}
Set(ptr, "default0")
fmt.Printf("ptr.I=%d ptr.S=%s\n", ptr.I, ptr.S)
// ptr.I=3 ptr.S=Some String...
Set(ptr, "default1")
fmt.Printf("ptr.I=%d ptr.S=%s\n", ptr.I, ptr.S)
// ptr.I=42 ptr.S=Some Other String...
}
Here's the complete program in a playground.
If you're interested in a more complex example, say with
slices and maps, then, take a look at creasty/defaultse
From https://golang.org/doc/effective_go.html#composite_literals:
Sometimes the zero value isn't good enough and an initializing constructor is necessary, as in this example derived from package os.
func NewFile(fd int, name string) *File {
if fd < 0 {
return nil
}
f := new(File)
f.fd = fd
f.name = name
f.dirinfo = nil
f.nepipe = 0
return f
}
What about making something like this:
// Card is the structure we work with
type Card struct {
Html js.Value
DefaultText string `default:"html"` // this only works with strings
}
// Init is the main function that initiate the structure, and return it
func (c Card) Init() Card {
c.Html = Document.Call("createElement", "div")
return c
}
Then call it as:
c := new(Card).Init()
I found this thread very helpful and educational. The other answers already provide good guidance, but I wanted to summarize my takeaways with an easy to reference (i.e. copy-paste) approach:
package main
import (
"fmt"
)
// Define an interface that is exported by your package.
type Foo interface {
GetValue() string // A function that'll return the value initialized with a default.
SetValue(v string) // A function that can update the default value.
}
// Define a struct type that is not exported by your package.
type foo struct {
value string
}
// A factory method to initialize an instance of `foo`,
// the unexported struct, with a default value.
func NewFoo() Foo {
return &foo{
value: "I am the DEFAULT value.",
}
}
// Implementation of the interface's `GetValue`
// for struct `foo`.
func (f *foo) GetValue() string {
return f.value
}
// Implementation of the interface's `SetValue`
// for struct `foo`.
func (f *foo) SetValue(v string) {
f.value = v
}
func main() {
f := NewFoo()
fmt.Printf("value: `%s`\n", f.GetValue())
f.SetValue("I am the UPDATED value.")
fmt.Printf("value: `%s`\n", f.GetValue())
}
One way to do that is:
// declare a type
type A struct {
Filed1 string
Field2 map[string]interface{}
}
So whenever you need a new variable of your custom defined type just call the NewA function also you can parameterise the function to optionally assign the values to the struct fields
func NewA() *A {
return &A{
Filed1: "",
Field2: make(map[string]interface{}),
}
}
for set default values in Go structs we use anonymous struct:
Person := struct {
name string
age int
city string
}{
name: "Peter",
age: 21,
city: "Noida",
}
fmt.Println(Person)
Structs
An easy way to make this program better is to use a struct. A struct is a type which contains named fields. For example we could represent a Circle like this:
type Circle struct {
x float64
y float64
r float64
}
The type keyword introduces a new type. It's followed by the name of the type (Circle), the keyword struct to indicate that we are defining a struct type and a list of fields inside of curly braces. Each field has a name and a type. Like with functions we can collapse fields that have the same type:
type Circle struct {
x, y, r float64
}
Initialization
We can create an instance of our new Circle type in a variety of ways:
var c Circle
Like with other data types, this will create a local Circle variable that is by default set to zero. For a struct zero means each of the fields is set to their corresponding zero value (0 for ints, 0.0 for floats, "" for strings, nil for pointers, …) We can also use the new function:
c := new(Circle)
This allocates memory for all the fields, sets each of them to their zero value and returns a pointer. (*Circle) More often we want to give each of the fields a value. We can do this in two ways. Like this:
c := Circle{x: 0, y: 0, r: 5}
Or we can leave off the field names if we know the order they were defined:
c := Circle{0, 0, 5}
type Config struct {
AWSRegion string `default:"us-west-2"`
}

In golang, how to type assert an interface{} to a type specified by a reflect.Type?

For example, I have an interface{} named a, and I also have an reflect.Type called elemType. Now, I want to type assert a to elemType, but a.(elemType) can't be compiled successfully. How to fix it?
Sorry for my confusing expression. My meaning is that I get a type from a function, and I want to type assert an interface{} to this type, but this type is stored in a reflect.Type variable.
What I want to do is similar to the code below:
var a interface{}
//do something
func getType() reflect.Type {
var ret reflect.Type
//do something
return ret
}
targetType := getType()
result := a.(targetType)
Consider a standard type assertion in Go:
v := a.(typeName)
Here the compiler can determine the type of the variable v at compile time, and make use of that knowledge when compiling any further statements involving the variable.
With your example of using a refltect.Type variable in the assertion, it would be impossible to determine the type of v, so the code could not be compiled.
If you need to check that a particular interface variable is of a particular type at runtime, you can still do that with the reflect package. For example:
// if elemType is a normal type
if reflect.ValueOf(a).Type() == elemType {
fmt.Println("type matches")
}
// if elemType is an interface, can check if the value implements it
if reflect.ValueOf(a).Type().Implements(elemType) {
fmt.Println("value implements interface")
}
But you will need a concrete type to return back to standard variables. If you've only got a small selection of possible types, perhaps using a type switch might do what you want.

Instance new Type (Golang)

Can anyone tell me how to create a new instance of Type from a string? Reflect?
There are examples but they are for the older (pre Go 1 versions) of the language [:(]
So, if I understand your question correctly, you are asking about how you can create an object when you just have the name of the type as string. So, for example, you might have a string "MyStruct" and you want to create an object of this type.
Unfortunately, that's not easily possible because Go is a statically typed language and the linker will eliminate dead code (or inline parts of it). So, there is no guarantee, that your final executable will even contain the code of "MyStruct".
You can however, maintain a global map[string]reflect.Type manually. For example by initializing this map in the init() function of your packages which defines such discover-able types. This will also tell the compiler that you are using the types. Afterwards, you can use this map to look up the reflect.Type of the type you want to create and use reflect.New to get a pointer to a new object of that type (stored as a reflect.Value). You can extract the object into an interface with something like this:
reflect.New(yourtype).Elem().Interface()
Elem() will de-reference the pointer and Interface() will return the reflected value as an interface{}. See The Laws of Reflection for further details.
PS: There might be a better way to structure your program which doesn't even require reflection and which let the compiler catch more errors. Have you considered using a factory method for example? An other easy solution might be to maintain a map[string]func() interface{} of functions which can be invoked to create a new object with that name.
Factory with predefined constructors can be based on something like:
package main
import (
"fmt"
)
type Creator func() interface{}
type A struct {
a int
}
type B struct {
a bool
}
func NewA() interface{} {
return new(A)
}
func NewB() interface{} {
return new(B)
}
func main() {
m := map[string]Creator{}
m["A"] = NewA
m["B"] = NewB
for k, v := range m {
fmt.Printf("%v -> %v\n", k, v())
}
}

Resources