Why called "ABA_problem"? - algorithm

today I knew ABA problem.
http://en.wikipedia.org/wiki/ABA_problem
By the way, suddenly, i just like to know why called "ABA" problem? abbreviation?

ABA is not an acronym and is a shortcut for stating that a value at a
shared location can change from A to B and then back to A :)

As far as I know, the problem is related to threads interleaving. So I think it comes as a short textual representation of interleaving. First, run a thread A, then switch to thread B, then get back to thread A.

Assume you have two threads, and one is checking a global character whether there's new data:
char flag = 'n';
void alarms(){
while(true){
if(flag == 'f'){
start_fire_alarm();
}
/* ... some other things, including some waiting ...*/
}
}
void sensors(){
while(true){
if(sensor_alerts_fire()){
flag = 'f';
} else {
flag = 'n';
}
}
}
Now alarm checks the flag, sees 'n' and everything is fine. Suddenly, a fire starts, and sensors sets the flag to 'f'. But before the operating system gives alarm some time to react, the physical sensors break, and they don't alert the fire anymore. sensors() sets the flag to 'n' again, the operating system gives alarm() some time and nothing happens.
This is the ABA problem (well, in our case NFN). You don't notice in the first thread that your shared value has changed in-between, although this could be critical. Note that you can exchange char with some atomic type and all assignments/tests with atomic ones, the problem would still be the same.

Related

Why can't dead code detection be fully solved by a compiler?

The compilers I've been using in C or Java have dead code prevention (warning when a line won't ever be executed). My professor says that this problem can never be fully solved by compilers though. I was wondering why that is. I am not too familiar with the actual coding of compilers as this is a theory-based class. But I was wondering what they check (such as possible input strings vs acceptable inputs, etc.), and why that is insufficient.
The dead code problem is related to the Halting problem.
Alan Turing proved that it is impossible to write a general algorithm that will be given a program and be able to decide whether that program halts for all inputs. You may be able to write such an algorithm for specific types of programs, but not for all programs.
How does this relate to dead code?
The Halting problem is reducible to the problem of finding dead code. That is, if you find an algorithm that can detect dead code in any program, then you can use that algorithm to test whether any program will halt. Since that has been proven to be impossible, it follows that writing an algorithm for dead code is impossible as well.
How do you transfer an algorithm for dead code into an algorithm for the Halting problem?
Simple: you add a line of code after the end of the program you want to check for halt. If your dead-code detector detects that this line is dead, then you know that the program does not halt. If it doesn't, then you know that your program halts (gets to the last line, and then to your added line of code).
Compilers usually check for things that can be proven at compile-time to be dead. For example, blocks that are dependent on conditions that can be determined to be false at compile time. Or any statement after a return (within the same scope).
These are specific cases, and therefore it's possible to write an algorithm for them. It may be possible to write algorithms for more complicated cases (like an algorithm that checks whether a condition is syntactically a contradiction and therefore will always return false), but still, that wouldn't cover all possible cases.
Well, let's take the classical proof of the undecidability of the halting problem and change the halting-detector to a dead-code detector!
C# program
using System;
using YourVendor.Compiler;
class Program
{
static void Main(string[] args)
{
string quine_text = #"using System;
using YourVendor.Compiler;
class Program
{{
static void Main(string[] args)
{{
string quine_text = #{0}{1}{0};
quine_text = string.Format(quine_text, (char)34, quine_text);
if (YourVendor.Compiler.HasDeadCode(quine_text))
{{
System.Console.WriteLine({0}Dead code!{0});
}}
}}
}}";
quine_text = string.Format(quine_text, (char)34, quine_text);
if (YourVendor.Compiler.HasDeadCode(quine_text))
{
System.Console.WriteLine("Dead code!");
}
}
}
If YourVendor.Compiler.HasDeadCode(quine_text) returns false, then the line System.Console.WriteLn("Dead code!"); won't be ever executed, so this program actually does have dead code, and the detector was wrong.
But if it returns true, then the line System.Console.WriteLn("Dead code!"); will be executed, and since there is no more code in the program, there is no dead code at all, so again, the detector was wrong.
So there you have it, a dead-code detector that returns only "There is dead code" or "There is no dead code" must sometimes yield wrong answers.
If the halting problem is too obscure, think of it this way.
Take a mathematical problem that is believed to be true for all positive integer's n, but hasn't been proven to be true for every n. A good example would be Goldbach's conjecture, that any positive even integer greater than two can be represented by the sum of two primes. Then (with an appropriate bigint library) run this program (pseudocode follows):
for (BigInt n = 4; ; n+=2) {
if (!isGoldbachsConjectureTrueFor(n)) {
print("Conjecture is false for at least one value of n\n");
exit(0);
}
}
Implementation of isGoldbachsConjectureTrueFor() is left as an exercise for the reader but for this purpose could be a simple iteration over all primes less than n
Now, logically the above must either be the equivalent of:
for (; ;) {
}
(i.e. an infinite loop) or
print("Conjecture is false for at least one value of n\n");
as Goldbach's conjecture must either be true or not true. If a compiler could always eliminate dead code, there would definitely be dead code to eliminate here in either case. However, in doing so at the very least your compiler would need to solve arbitrarily hard problems. We could provide problems provably hard that it would have to solve (e.g. NP-complete problems) to determine which bit of code to eliminate. For instance if we take this program:
String target = "f3c5ac5a63d50099f3b5147cabbbd81e89211513a92e3dcd2565d8c7d302ba9c";
for (BigInt n = 0; n < 2**2048; n++) {
String s = n.toString();
if (sha256(s).equals(target)) {
print("Found SHA value\n");
exit(0);
}
}
print("Not found SHA value\n");
we know that the program will either print out "Found SHA value" or "Not found SHA value" (bonus points if you can tell me which one is true). However, for a compiler to be able to reasonably optimise that would take of the order of 2^2048 iterations. It would in fact be a great optimisation as I predict the above program would (or might) run until the heat death of the universe rather than printing anything without optimisation.
I don't know if C++ or Java have an Eval type function, but many languages do allow you do call methods by name. Consider the following (contrived) VBA example.
Dim methodName As String
If foo Then
methodName = "Bar"
Else
methodName = "Qux"
End If
Application.Run(methodName)
The name of the method to be called is impossible to know until runtime. Therefore, by definition, the compiler cannot know with absolute certainty that a particular method is never called.
Actually, given the example of calling a method by name, the branching logic isn't even necessary. Simply saying
Application.Run("Bar")
Is more than the compiler can determine. When the code is compiled, all the compiler knows is that a certain string value is being passed to that method. It doesn't check to see if that method exists until runtime. If the method isn't called elsewhere, through more normal methods, an attempt to find dead methods can return false positives. The same issue exists in any language that allows code to be called via reflection.
Unconditional dead code can be detected and removed by advanced compilers.
But there is also conditional dead code. That is code that cannot be known at the time of compilation and can only be detected during runtime. For example, a software may be configurable to include or exclude certain features depending on user preference, making certain sections of code seemingly dead in particular scenarios. That is not be real dead code.
There are specific tools that can do testing, resolve dependencies, remove conditional dead code and recombine the useful code at runtime for efficiency. This is called dynamic dead code elimination. But as you can see it is beyond the scope of compilers.
A simple example:
int readValueFromPort(const unsigned int portNum);
int x = readValueFromPort(0x100); // just an example, nothing meaningful
if (x < 2)
{
std::cout << "Hey! X < 2" << std::endl;
}
else
{
std::cout << "X is too big!" << std::endl;
}
Now assume that the port 0x100 is designed to return only 0 or 1. In that case the compiler cannot figure out that the else block will never be executed.
However in this basic example:
bool boolVal = /*anything boolean*/;
if (boolVal)
{
// Do A
}
else if (!boolVal)
{
// Do B
}
else
{
// Do C
}
Here the compiler can calculate out the the else block is a dead code.
So the compiler can warn about the dead code only if it has enough data to to figure out the dead code and also it should know how to apply that data in order to figure out if the given block is a dead code.
EDIT
Sometimes the data is just not available at the compilation time:
// File a.cpp
bool boolMethod();
bool boolVal = boolMethod();
if (boolVal)
{
// Do A
}
else
{
// Do B
}
//............
// File b.cpp
bool boolMethod()
{
return true;
}
While compiling a.cpp the compiler cannot know that boolMethod always returns true.
The compiler will always lack some context information. E.g. you might know, that a double value never exeeds 2, because that is a feature of the mathematical function, you use from a library. The compiler does not even see the code in the library, and it can never know all features of all mathematical functions, and detect all weired and complicated ways to implement them.
The compiler doesn't necessarily see the whole program. I could have a program that calls a shared library, which calls back into a function in my program which isn't called directly.
So a function which is dead with respect to the library it's compiled against could become alive if that library was changed at runtime.
If a compiler could eliminate all dead code accurately, it would be called an interpreter.
Consider this simple scenario:
if (my_func()) {
am_i_dead();
}
my_func() can contain arbitrary code and in order for the compiler to determine whether it returns true or false, it will either have to run the code or do something that is functionally equivalent to running the code.
The idea of a compiler is that it only performs a partial analysis of the code, thus simplifying the job of a separate running environment. If you perform a full analysis, that isn't a compiler any more.
If you consider the compiler as a function c(), where c(source)=compiled code, and the running environment as r(), where r(compiled code)=program output, then to determine the output for any source code you have to compute the value of r(c(source code)). If calculating c() requires the knowledge of the value of r(c()) for any input, there is no need for a separate r() and c(): you can just derive a function i() from c() such that i(source)=program output.
Others have commented on the halting problem and so forth. These generally apply to portions of functions. However it can be hard/impossible to know whether even an entire type (class/etc) is used or not.
In .NET/Java/JavaScript and other runtime driven environments there's nothing stopping types being loaded via reflection. This is popular with dependency injection frameworks, and is even harder to reason about in the face of deserialisation or dynamic module loading.
The compiler cannot know whether such types would be loaded. Their names could come from external config files at runtime.
You might like to search around for tree shaking which is a common term for tools that attempt to safely remove unused subgraphs of code.
Take a function
void DoSomeAction(int actnumber)
{
switch(actnumber)
{
case 1: Action1(); break;
case 2: Action2(); break;
case 3: Action3(); break;
}
}
Can you prove that actnumber will never be 2 so that Action2() is never called...?
I disagree about the halting problem. I wouldn't call such code dead even though in reality it will never be reached.
Instead, lets consider:
for (int N = 3;;N++)
for (int A = 2; A < int.MaxValue; A++)
for (int B = 2; B < int.MaxValue; B++)
{
int Square = Math.Pow(A, N) + Math.Pow(B, N);
float Test = Math.Sqrt(Square);
if (Test == Math.Trunc(Test))
FermatWasWrong();
}
private void FermatWasWrong()
{
Press.Announce("Fermat was wrong!");
Nobel.Claim();
}
(Ignore the type and overflow errors) Dead code?
Look at this example:
public boolean isEven(int i){
if(i % 2 == 0)
return true;
if(i % 2 == 1)
return false;
return false;
}
The compiler can't know that an int can only be even or odd. Therefore the compiler must be able to understand the semantics of your code. How should this be implemented? The compiler can't ensure that the lowest return will never be executed. Therefore the compiler can't detect the dead code.

about memory barriers (why the following example is error)

I read one article,
https://www.kernel.org/doc/Documentation/memory-barriers.txt
In this doc, the following example shown
So don't leave out the ACCESS_ONCE().
It is tempting to try to enforce ordering on identical stores on both
branches of the "if" statement as follows:
q = ACCESS_ONCE(a);
if (q) {
barrier();
ACCESS_ONCE(b) = p;
do_something();
} else {
barrier();
ACCESS_ONCE(b) = p;
do_something_else();
}
Unfortunately, current compilers will transform this as follows at high
optimization levels:
q = ACCESS_ONCE(a);
barrier();
ACCESS_ONCE(b) = p; /* BUG: No ordering vs. load from a!!! */
if (q) {
/* ACCESS_ONCE(b) = p; -- moved up, BUG!!! */
do_something();
} else {
/* ACCESS_ONCE(b) = p; -- moved up, BUG!!! */
do_something_else();
}
I don't know, why "moveed up" is a bug ? If I write code, I will move "ACCESS_ONE(b) up because both if/else branch execute the same code.
It isn't so much that the moving up is a bug, it's that it exposes a bug in the code.
The intention was to use the conditional on q (from a), to ensure that the write to b is done after the read from a; because both stores are "protected" by a conditional and "stores are not speculated", the CPU shouldn't be making the store until it knows the outcome of the condition, which requires the read to have been done first.
The compiler defeats this intention by seeing that both branches of the conditional start with the same thing, so in a formal sense those statements are not conditioned. The problem with this is explained in the next paragraph:
Now there is no conditional between the load from 'a' and the store to
'b', which means that the CPU is within its rights to reorder them:
The conditional is absolutely required, and must be present in the
assembly code even after all compiler optimizations have been applied.
I'm not experienced enough to know exactly what is meant by barrier(), but apparently it is not powerful enough to enforce the ordering between the two independent memory operations.

What does an empty select do?

I found the following code in net/http/httptest and wonder what the empty select statement does in Go.
go s.Config.Serve(s.Listener)
if *serve != "" {
fmt.Fprintln(os.Stderr, "httptest: serving on", s.URL)
select {}
}
An empty select{} statement blocks forever. It is similar to an empty for{} statement.
On most (all?) supported Go architectures, the empty select will yield CPU. An empty for-loop won't, i.e. it will "spin" on 100% CPU.
On Mac OS X, in Go, for { } will cause the CPU% to max, and the process's STATE will be running
select { }, on the other hand, will not cause the CPU% to max, and the process's STATE will be sleeping
The empty select statement just blocks the current goroutine.
As for why you'd do this, here is one reason. This snippet is equivalent
if *serve != "" {
fmt.Fprintln(os.Stderr, "httptest: serving on", s.URL)
s.Config.Serve(s.Listener)
} else {
go s.Config.Serve(s.Listener)
}
It's better in that there isn't a wasted goroutine. It's worse in that now there is code repetition. The author optimized for less code repetition over a wasted resource. Note however the permanently block goroutine is trivial to detect and may have zero cost over the duplicating version.

Is it possible to inject values in the frama-c value analyzer?

I'm experimenting with the frama-c value analyzer to evaluate C-Code, which is actually threaded.
I want to ignore any threading problems that might occur und just inspect the possible values for a single thread. So far this works by setting the entry point to where the thread starts.
Now to my problem: Inside one thread I read values that are written by another thread, because frama-c does not (and should not?) consider threading (currently) it assumes my variable is in some broad range, but I know that the range is in fact much smaller.
Is it possible to tell the value analyzer the value range of this variable?
Example:
volatile int x = 0;
void f() {
while(x==0)
sleep(100);
...
}
Here frama-c detects that x is volatile and thus has range [--..--], but I know what the other thread will write into x, and I want to tell the analyzer that x can only be 0 or 1.
Is this possible with frama-c, especially in the gui?
Thanks in advance
Christian
This is currently not possible automatically. The value analysis considers that volatile variables always contain the full range of values included in their underlying type. There however exists a proprietary plug-in that transforms accesses to volatile variables into calls to user-supplied function. In your case, your code would be transformed into essentially this:
int x = 0;
void f() {
while(1) {
x = f_volatile_x();
if (x == 0)
sleep(100);
...
}
By specifying f_volatile_x correctly, you can ensure it returns values between 0 and 1 only.
If the variable 'x' is not modified in the thread you are studying, you could also initialize it at the beginning of the 'main' function with :
x = Frama_C_interval (0, 1);
This is a function defined by Frama-C in ...../share/frama-c/builtin.c so you have to add this file to your inputs when you use it.

How can I optimize a multiple (matrix) switch / case algorithm?

Is it possible to optimize this kind of (matrix) algorithm:
// | case 1 | case 2 | case 3 |
// ------|--------|--------|--------|
// | | | |
// case a| a1 | a2 | a3 |
// | | | |
// case b| b1 | b2 | b3 |
// | | | |
// case c| c1 | c2 | c3 |
// | | | |
switch (var)
{
case 1:
switch (subvar)
{
case a:
process a1;
case b:
process b1;
case c:
process c1;
}
case 2:
switch (subvar)
{
case a:
process a2;
case b:
process b2;
case c:
process c2;
}
case 3:
switch (subvar)
{
case a:
process a3;
case b:
process b3;
case c:
process c3;
}
}
The code is fairly simple but you have to imagine more complex with more "switch / case".
I work with 3 variables. According they take the values 1, 2, 3 or a, b, c or alpha, beta, charlie have different processes to achieve. Is it possible to optimize it any other way than through a series of "switch / case?
(Question already asked in french here).
Edit: (from Dran Dane's responses to comments below. These might as well be in this more prominent place!)
"optimize" is to be understood in terms of having to write less code, fewer "switch / case". The idea is to improve readability, maintainability, not performance.
There is maybe a way to write less code via a "Chain of Responsibility" but this solution is not optimal on all points, because it requires the creation of many objects in memory.
It sounds like what you want is a 'Finite State Machine' where using those cases you can activate different processes or 'states'. In C this is usually done with an array (matrix) of function pointers.
So you essentially make an array and put the right function pointers at the right indicies and then you use your 'var' as an index to the right 'process' and then you call it. You can do this in most languages. That way different inputs to the machine activate different processes and bring it to different states. This is very useful for numerous applications; I myself use it all of the time in MCU development.
Edit: Valya pointed out that I probably should show a basic model:
stateMachine[var1][var2](); // calls the right 'process' for input var1, var2
There are no good answers to this question :-(
because so much of the response depends on
The effective goals (what is meant by "optimize", what is unpleasing about the nested switches)
The context in which this construct is going to be applied (what are the ultimate needs implicit to the application)
TokenMacGuy was wise to ask about the goals. I took the time to check the question and its replies on the French site and I'm still puzzled as to the goals... Dran Dane latest response seems to point towards lessening the amount of code / improving readability but let's review for sure:
Processing Speed: not an issue the nested switches are quite efficient, possibly a tat less than 3 multiplications to get an index into a map table, but maybe not even.
Readability: yes possibly an issue, As the number of variables and level increases the combinatorial explosion kicks in, and also the format of the switch statement tends to spread the branching spot and associated values over a long vertical stretch. In this case a 3 dimension (or more) table initialized with fct. pointers puts back together the branching values and the function to be call on on a single line.
Writing less code: Sorry not much help here; at the end of the day we need to account for a relatively high number of combinations and the "map", whatever its form, must be written somewhere. Code generators such as TokenMacGuy's may come handy, it does seem a bit of an overkill in this case. Generators have their place, but I'm not sure it is the case here. One of two case: if the number of variables and level is small enough, the generator is not worth it (takes more time to set it up than to write the actual code in the first place), if the number of variables and levels is significant, the generated code is hard to read, hard to maintain...)
In a nutshell, my recommendation with regards to making the code more readable (and a bit faster to write) is the table/matrix approach described on the French site.
This solution is in two part:
a one time initialization of a 3 dimensional array (for 3 levels); (or a "fancier" container structure if preferred: a tree for example) . This is done with code like:
// This is positively more compact / readable
...
FctMap[1][4][0] = fctAlphaOne;
FctMap[1][4][1] = fctAlphaOne;
..
FctMap[3][0][0] = fctBravoCharlie4;
FctMap[3][0][1] = NULL; // impossible case
FctMap[3][0][2] = fctBravoCharlie4; // note how the same fct may serve in mult. places
And a relatively simple snippet wherever the functions need to be called:
if (FctMap[cond1][cond2][cond3]) {
retVal = FctMap[cond1][cond2][cond3](Arg1, Arg2);
if (retVal < 0)
DoSomething(); // anyway we're leveraging the common api to these fct not the switch alternative ....
}
A case which may prompt one NOT using the solution above are if the combination space is relatively sparsely populated (many "branches" in the switch "tree" are not used) or if some of the functions require a different set of parameters; For both of these cases, I'd like to plug a solution Joel Goodwin proposed first here, and which essentially combines the various keys for the several level into one longer key (with separator character if need be), essentially flattening the problem back to a long, but single level switch statement.
Now...
The real discussion should be about why we need such a mapping/decision-tree in the first place. To answer this unfortunately requires understanding the true nature of the underlying application. To be sure I'm not saying that this is indicative of bad design. A big dispatching section may make sense in some applications. However, even with the C language (which the French Site contributors seemed to disqualify to Object Oriented design), it is possible to adopt Object oriented methodology and patterns. Anyway I'm diverging...) It is possible that the application would overall be better served with alternative design patterns where the "information tree about what to call when" has been distributed in several modules and/or several objects.
Apologies to speak about this in rather abstract terms, it's just the lack of application specifics... The point remains: challenge the idea that we need this big dispatching tree; think of alternative approaches to the application at large.
Alors, bonne chance! ;-)
Depending on the language, some form of hash map with the pair (var, subvar) as the key and first-class functions as the values (or whatever your language offers to best approximate that, e.g. instances of classes extending some proper interface in Java) is likely to provide top performance -- and the utter conciseness of fetching the appropriate function (or whatever;-) from the map based on the key, and executing it, leads to high readability for readers familiar with the language and such functional idioms.
The idea of a function pointer is probably best (as per mjv, Shhnap). But, if the code under each case is fairly small, it may be overkill and result in more obfuscation than intended. In that case, I might implement something snappy and fast-to-read like this:
string decision = var1.ToString() + var2.ToString() + var3.ToString();
switch(decision)
{
case "1aa":
....
case "1ab":
....
}
Unfamiliar with your particular scenario so perhaps the previous suggestions are more appropriate.
I had exactly the same problem once, albeit for an immanent mess of a 5-parameter nested switch. I figured, why type all these O(N5) cases myself, why even invent 'nested' function names if the compiler can do this for me. And all this resulted in a 'nested specialized template switch' referring to a 'specialized template database'.
It's a little complicated to write. But I found it worth it: it results in a 'knowledge' database that is very easy to maintain, to debug, to add to etc... And I must admit: a sense of pride.
// the return type: might be an object actually _doing_ something
struct Result {
const char* value;
Result(): value(NULL){}
Result( const char* p ):value(p){};
};
Some variable types for switching:
// types used:
struct A { enum e { a1, a2, a3 }; };
struct B { enum e { b1, b2 }; };
struct C { enum e { c1, c2 }; };
A 'forward declaration' of the knowledge base: the 'api' of the nested switch.
// template database declaration (and default value - omit if not needed)
// specializations may execute code in stead of returning values...
template< A::e, B::e, C::e > Result valuedb() { return "not defined"; };
The actual switching logic (condensed)
// template layer 1: work away the first parameter, then the next, ...
struct Switch {
static Result value( A::e a, B::e b, C::e c ) {
switch( a ) {
case A::a1: return SwitchA<A::a1>::value( b, c );
case A::a2: return SwitchA<A::a2>::value( b, c );
case A::a3: return SwitchA<A::a3>::value( b, c );
default: return Result();
}
}
template< A::e a > struct SwitchA {
static Result value( B::e b, C::e c ) {
switch( b ) {
case B::b1: return SwitchB<a, B::b1>::value( c );
case B::b2: return SwitchB<a, B::b2>::value( c );
default: return Result();
}
}
template< A::e a, B::e b > struct SwitchB {
static Result value( C::e c ) {
switch( c ) {
case C::c1: return valuedb< a, b, C::c1 >();
case C::c2: return valuedb< a, b, C::c2 >();
default: return Result();
}
};
};
};
};
And the knowledge base itself
// the template database
//
template<> Result valuedb<A::a1, B::b1, C::c1 >() { return "a1b1c1"; }
template<> Result valuedb<A::a1, B::b2, C::c2 >() { return "a1b2c2"; }
This is how it can be used.
int main()
{
// usage:
Result r = Switch::value( A::a1, B::b2, C::c2 );
return 0;
}
Yes, there is definitely easier way to do that, both faster and simpler. The idea is basically the same as proposed by Alex Martelli. Instead of seeing you problem as bi-dimentional, see it as some one dimension lookup table.
It means combining var, subvar, subsubvar, etc to get one unique key and use it as your lookup table entry point.
The way to do it depends on the used language. With python combining var, subvar etc. to build a tuple and use it as key in a dictionnary is enough.
With C or such it's usually simpler to convert each keys to enums, then combine them using logical operators to get just one number that you can use in your switch (that's also an easy way to use switch instead of string comparizons with cascading ifs). You also get another benefit doing it. It's quite usual that several treatments in different branches of the initial switch are the same. With the initial form it's quite difficult to make that obvious. You'll probably have some calls to the same functions but it's at differents points in code. Now you can just group the identical cases when writing the switch.
I used such transformation several times in production code and it's easy to do and to maintain.
Summarily you can get something like this... the mix function obviously depends on your application specifics.
switch (mix(var, subvar))
{
case a1:
process a1;
case b1:
process b1;
case c1:
process c1;
case a2:
process a2;
case b2:
process b2;
case c2:
process c2;
case a3:
process a3;
case b3:
process b3;
case c3:
process c3;
}
Perhaps what you want is code generation?
#! /usr/bin/python
first = [1, 2, 3]
second = ['a', 'b', 'c']
def emit(first, second):
result = "switch (var)\n{\n"
for f in first:
result += " case {0}:\n switch (subvar)\n {{\n".format(f)
for s in second:
result += " case {1}:\n process {1}{0};\n".format(f,s)
result += " }\n"
result += "}\n"
return result
print emit(first,second)
#file("autogen.c","w").write(emit(first,second))
This is pretty hard to read, of course, and you might really want a nicer template language to do your dirty work, but this will ease some parts of your task.
If C++ is an option i would try using virtual function and maybe double dispatch. That could make it much cleaner. But it will only probably pay off only if you have many more cases.
This article on DDJ.com might be a good entry.
If you're just trying to eliminate the two-level switch/case statements (and save some vertical space), you can encode the two variable values into a single value, then switch on it:
// Assumes var is in [1,3] and subvar in [1,3]
// and that var and subvar can be cast to int values
switch (10*var + subvar)
{
case 10+1:
process a1;
case 10+2:
process b1;
case 10+3:
process c1;
//
case 20+1:
process a2;
case 20+2:
process b2;
case 20+3:
process c2;
//
case 30+1:
process a3;
case 30+2:
process b3;
case 30+3:
process c3;
//
default:
process error;
}
If your language is C#, and your choices are short enough and contain no special characters you can use reflection and do it with just a few lines of code. This way, instead of manually creating and maintaining an array of function pointers, use one that the framework provides!
Like this:
using System.Reflection;
...
void DispatchCall(string var, string subvar)
{
string functionName="Func_"+var+"_"+subvar;
MethodInfo m=this.GetType().GetMethod(fName);
if (m == null) throw new ArgumentException("Invalid function name "+ functionName);
m.Invoke(this, new object[] { /* put parameters here if needed */ });
}
void Func_1_a()
{
//executed when var=1 and subvar=a
}
void Func_2_charlie()
{
//executed when var=2 and subvar=charlie
}
Solution from developpez.com
Yes, you can optimize it and make it so much cleaner. You can not use such a "Chain of
Responsibility" with a Factory:
public class ProcessFactory {
private ArrayList<Process> processses = null;
public ProcessFactory(){
super();
processses = new ArrayList<Process>();
processses.add(new ProcessC1());
processses.add(new ProcessC2());
processses.add(new ProcessC3());
processses.add(new ProcessC4());
processses.add(new ProcessC5(6));
processses.add(new ProcessC5(22));
}
public Process getProcess(int var, int subvar){
for(Process process : processses){
if(process.canDo(var, subvar)){
return process;
}
}
return null;
}
}
Then just as your processes implement an interface process with canXXX you can easily use:
new ProcessFactory().getProcess(var,subvar).launch();

Resources