Linux character-device protection - char

I would like to protect my character device,from application operations.
I would like that only specific application can do operation on the device.
How can I do it?
Thanks

This may not be correct answer(Because I didn't test it). But I believe this will work.
I hope, you have idea about current field in task_struct which will give you the current PID of the process. Please refer this thread. how does current->pid work for linux?
so instead of pid, you can use comm field of task_struct.
http://lxr.free-electrons.com/source/include/linux/sched.h#L1180.
Keep an array of allowed application names in your driver. check comm field against allowed list during /dev/<yourchardriver> open() operation.
sample file operations structure.
struct file_operations fops = { /* these are the file operations provided by our driver */
.owner = THIS_MODULE, /*prevents unloading when operations are in use*/
.open = device_open, /*to open the device*/
.write = device_write, /*to write to the device*/
.read = device_read, /*to read the device*/
.release = device_close, /*to close the device*/
.llseek = device_lseek
};
when you call open("/dev/sampledrv") in user space, device_open() will be called in your driver. so these validation can be done here.

Related

How to map memory in DriverKit using IOMemoryDescriptor::CreateMapping?

I am trying to learn more about DriverKit and memory management, and I read this question:
How to allocate memory in a DriverKit system extension and map it to another process?
And I would like to understand how to use IOMemoryDescriptor::CreateMapping.
I wrote a little app to test this where I do (very simplified code):
uint8_t * buffer = new uint8_t[256];
for (int i = 0 ; i < 256 ; i++)
buffer[i] = 0xC6;
clientData in, out;
in.nbytes = 256;
in.pbuffer = buffer;
size_t sout = sizeof(out);
IOConnectCallStructMethod(connection, selector,&in,sizeof(in),&out,&sout);
// out.pbuffer now has new values in it
In my Kext user client class, I was doing (I am simplifying):
IOReturn UserClient::MyExtFunction(clientData * in, clientData * out, IOByteCount inSize, IOByteCount * outSize)
{
MyFunction(in->nBytes, in->pbuffer);//this will change the content of pbuffer
*out = *in;
}
IOReturn UserClient::MyFunction(SInt32 nBytesToRead,void* pUserBuffer,SInt32* nBytesRead)
{
PrepareBuffer(nBytesToRead,&pBuffer);
...
(call function that will fill pBuffer)
}
IOReturn UserClient::PrepareBuffer(UInt32 nBytes,void** pBuffer);
{
IOMemoryDescriptor * desc = IOMemoryDescriptor::withAddressRange((mach_vm_address_t)*pBuffer,nBytes,direction, owner task);
desc->prepare();
IOMemoryMap * map = desc->map();
*pBuffer = (void*)map->getVirtualAddress();
return kIOReturnSuccess;
}
This is what I don't know how to reproduce in a DExt and where I think I really don't understand the basic of CreateMapping.
Or is what I used to do not possible?
In my driver, this is where I don't know how to use CreateMapping and IOMemoryMap so this buffer can be mapped to a memory location and updated with different values.
I can create an IOBufferMemoryDescriptor but how do I tie it to the buffer from my application? I also don't understand the various options for CreateMapping.
Please note that in another test app I have successfully used IOConnectMapMemory64()/CopyClientMemoryForType() but I would like to learn specifically about CreateMapping().
(I hope it is alright I edited this question a lot... still new to StackOverflow)
Or is what I used to do not possible?
In short, no.
You're attempting to map arbitrary user process memory, which the client application did not explicitly mark as available to the driver using IOKit. This doesn't fit with Apple's ideas about safety, security, and sandboxing, so this sort of thing isn't available in DriverKit.
Obviously, kexts are all-powerful, so this was possible before, and indeed, I've used the technique myself in shipping drivers and then ran into trouble when porting said kexts to DriverKit.
The only ways to gain direct access to the client process's memory, as far as I'm aware, are:
By passing buffers >= 4097 bytes as struct input or output arguments to IOConnectCall…Method()s so they arrive as IOMemoryDescriptors in the driver. Note that these can be retained in the driver longer term, but at least for input structs, updates on the user space side won't be reflected on the driver side as a copy-on-write mapping is used. So they should be used purely for sending data in the intended direction.
By the user process mapping an existing IOMemoryDescriptor into its space using IOConnectMapMemory64()/CopyClientMemoryForType().
This does mean you can't use indirect data structures like the one you are using. You'll have to use "packed" structures, or indices into long-lasting shared buffers.
By "packed" structures I mean buffers containing a header struct such as your clientData which is followed in contiguous memory by further data, such as your buffer, referencing it by offset into this contiguous memory. The whole contiguous memory block can be passed as an input struct.
I have filed feedback with Apple requesting a more powerful mechanism for exchanging data between user clients and dexts; I have no idea if it will be implemented, but if such a facility would be useful, I recommend you do the same. (explaining what you'd like to use it for with examples) The more of us report it, the more likely it'll happen. (IOMemoryDescriptor::CreateSubMemoryDescriptor() was added after I filed a request for it; I won't claim I was the first to do so, or that Apple wasn't planning to add it prior to my suggestion, but they are actively improving the DriverKit APIs.)
Original answer before question was edited to be much more specific:
(Retained because it explains in general terms how buffer arguments to external methods are handled, which is likely helpful for future readers.)
Your question is a little vague, but let me see if I can work out what you did in your kext, vs what you're doing in your dext:
You're calling IOConnectCallStructMethod(connection, selector, buffer, 256, NULL, NULL); in your app. This means buffer is passed as a "struct input" argument to your external method.
Because your buffer is 256 bytes long, which is less than or equal to sizeof(io_struct_inband_t), the contents of the buffer is sent to the kernel in-band - in other words, it's copied at the time of the IOConnectCallStructMethod() call.
This means that in your kext's external method dispatch function, the struct input is passed via the structureInput/structureInputSize fields in the incoming IOExternalMethodArguments struct. structureInput is a pointer in the kernel context and can be dereferenced directly. The pointer is only valid during execution of your method dispatch, and can't be used once the method has returned synchronously.
If you need to use the buffer for device I/O, you may need to wrap it in an IOMemoryDescriptor. One way to do this is indeed via IOMemoryDescriptor::CreateMapping().
If the buffer was 4097 bytes or larger, it would be passed via the structureInputDescriptor IOMemoryDescriptor, which can either be passed along to device I/O directly, or memory-mapped for dereferencing in the kernel. This memory descriptor directly references the user process's memory.
DriverKit extensions are considerably more limited in what they can do, but external method arguments arrive in almost exactly the same way.
Small structs arrive via the IOUserClientMethodArguments' structureInput field, which points to an OSData object. You can access the content via the getBytesNoCopy()/getLength() methods.
If you need this data in an IOMemoryDescriptor for onward I/O, the only way I know of is to create an IOBufferMemoryDescriptor using either IOUSBHostDevice::CreateIOBuffer() or IOBufferMemoryDescriptor::Create and then copying the data from the OSData object into the buffer.
Large buffers are again already referenced via an IOMemoryDescriptor. You can pass this on to I/O functions, or map it into the driver's address space using CreateMapping()
namespace
{
/*
**********************************************************************************
** create a memory descriptor and map its address
**********************************************************************************
*/
IOReturn arcmsr_userclient_create_memory_descriptor_and_map_address(const void* address, size_t length, IOMemoryDescriptor** memory_descriptor)
{
IOBufferMemoryDescriptor *buffer_memory_descriptor = nullptr;
uint64_t buffer_address;
uint64_t len;
#if ARCMSR_DEBUG_IO_USER_CLIENT
arcmsr_debug_print("ArcMSRUserClient: *******************************************************\n");
arcmsr_debug_print("ArcMSRUserClient: ** IOUserClient IOMemoryDescriptor create_with_bytes \n");
arcmsr_debug_print("ArcMSRUserClient: *******************************************************\n");
#endif
if (!address || !memory_descriptor)
{
return kIOReturnBadArgument;
}
if (IOBufferMemoryDescriptor::Create(kIOMemoryDirectionInOut, length, 0, &buffer_memory_descriptor) != kIOReturnSuccess)
{
if (buffer_memory_descriptor)
{
OSSafeReleaseNULL(buffer_memory_descriptor);
}
return kIOReturnError;
}
if (buffer_memory_descriptor->Map(0, 0, 0, 0, &buffer_address, &len) != kIOReturnSuccess)
{
if (buffer_memory_descriptor)
{
OSSafeReleaseNULL(buffer_memory_descriptor);
}
return kIOReturnError;
}
if (length != len)
{
if (buffer_memory_descriptor)
{
OSSafeReleaseNULL(buffer_memory_descriptor);
}
return kIOReturnNoMemory;
}
memcpy(reinterpret_cast<void*>(buffer_address), address, length);
*memory_descriptor = buffer_memory_descriptor;
return kIOReturnSuccess;
}
} /* namespace */

How to get the timestamp of when a disk is made offline from diskmgmt or other ways in windows?

I want to know the time when a disk is made offline by user. Is there a way to know this through WMI classes or other ways?
If you cannot find a way to do it through the Win32 API/WMI or other, I do know of an alternate way which you could look into as a last-resort.
What about using NtQueryVolumeInformationFile with the FileFsVolumeInformation class? You can do this to retrieve the data about the volume and then access the data through the FILE_FS_VOLUME_INFORMATION structure. This includes the creation time.
At the end of the post, I've left some resource links for you to read more on understanding this so you can finish it off the way you'd like to implement it; I do need to quickly address something important though, which is that the documentation will lead you to
an enum definition for the _FSINFOCLASS, but just by copy-pasting it from MSDN, it probably won't work. You need to set the first entry of the enum definition to 1 manually, otherwise it will mess up and NtQueryVolumeInformationFile will return an error status of STATUS_INVALID_INFO_CLASS (because the first entry will be identified as 0 and not 1 and then all the entries following it will be -1 to what they should be unless you manually set the = 1).
Here is the edited version which should work.
typedef enum _FSINFOCLASS {
FileFsVolumeInformation = 1,
FileFsLabelInformation,
FileFsSizeInformation,
FileFsDeviceInformation,
FileFsAttributeInformation,
FileFsControlInformation,
FileFsFullSizeInformation,
FileFsObjectIdInformation,
FileFsDriverPathInformation,
FileFsVolumeFlagsInformation,
FileFsSectorSizeInformation,
FileFsDataCopyInformation,
FileFsMetadataSizeInformation,
FileFsMaximumInformation
} FS_INFORMATION_CLASS, *PFS_INFORMATION_CLASS;
Once you've opened a handle to the disk, you can call NtQueryVolumeInformationFile like this:
NTSTATUS NtStatus = 0;
HANDLE FileHandle = NULL;
IO_STATUS_BLOCK IoStatusBlock = { 0 };
FILE_FS_VOLUME_INFORMATION FsVolumeInformation = { 0 };
...
Open the handle to the disk here, and then check that you have a valid handle.
...
NtStatus = NtQueryVolumeInformationFile(FileHandle,
&IoStatusBlock,
&FsVolumeInformation,
sizeof(FILE_FS_VOLUME_INFORMATION),
FileFsVolumeInformation);
...
If NtStatus represents an NTSTATUS error code for success (e.g. STATUS_SUCCESS) then you can access the VolumeCreationTime (LARGE_INTEGER) field of the FILE_FS_VOLUME_INFORMATION structure with the FsVolumeInformation variable.
Your final task at this point will be using the LARGE_INTEGER field named VolumeCreationTime to gather proper time/date information. There are two links included at the end of the post which are focused on that topic, they should help you sort it out.
See the following for more information.
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntqueryvolumeinformationfile
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/wdm/ne-wdm-_fsinfoclass
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntddk/ns-ntddk-_file_fs_volume_information
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724280.aspx
https://blogs.msdn.microsoft.com/joshpoley/2007/12/19/datetime-formats-and-conversions/

Where is code refers to /proc/PID/maps?

I what to observe kernel code to print /proc/PID/maps but can't find this. Could anybody tell me where this code is located
The procfs code can be found in fs/proc/ subdirectory. If you open fs/proc/base.c, you can find two very similar arrays - tgid_base_stuff and tid_base_stuff. They both register file operations functions for files inside of /proc/PID/ and /proc/PID/TID/ respectivly. So you're more interested in the first one. Find the one that registers "maps" file, it looks like this:
REG("maps", S_IRUGO, proc_pid_maps_operations),
So the structure describing file operations on this file is called proc_pid_maps_operations. This function is defined in two places - fs/proc/task_mmu.c and fs/proc/task_nommu.c. Which one is actually used depends on your kernel configuration but it's most likely the first one.
Inside of task_mmu.c, you can find the structure definition:
const struct file_operations proc_pid_maps_operations =
{
.open = pid_maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
So when /proc/PID/maps is opened, the kernel will use pid_maps_open function, which registers another set of operations:
static const struct seq_operations proc_pid_maps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_pid_map
};
So you're interested in show_pid_map function, which only calls show_map function which in turn calls show_map_vma (all in the same file).
It's the show_pid_map() function in fs/proc/task_mmu.c (provided your system uses an MMU, which is the case of most non-embedded systems).
In general, the code for files under /proc/ can be cause under fs/procfs.

create device mapper target

I am trying to implement device mapper target by referring to the already existing ones dm-linear, dm-snapshot, dm-cache etc. In my implementation, I need to perform a read/modify/write operation on a certain sector range. Since the device mapper directly talks to the block layer, I am not sure what data structures/functions to use to read the sectors in the memory, modify the buffer and write it back to another sector range.
At the application level, we have syscalls and below we have vfs_read/vfs_write. Is there anything similar for device mapper layer?
I have been stuck here for very long. Any help will be appreciated.
NOTE: My answer is related to kernel version < 3.14, because since 3.14 API is slightly changed.
In kernel you read/write certain sectors with struct bio. This struct is used for all block level I/O. Comprehensive documentation can be found in kernel and on lwn. These are the several most significant members of this structure:
bio->bi_sector - first sector of block I/O request
bio->bi_size - size of I/O request
bio->bi_bdev - device to read/write
bio->bi_end_io - callback that kernel will call on the end of request
What you do in device mapper target is map incoming bio. When you creating your device mapper target you supply at least 2 callbacks: ctr, and map. For example, the simplest device-mapper target dm-zero declares it's callbacks as following:
static struct target_type zero_target = {
.name = "zero",
.version = {1, 1, 0},
.module = THIS_MODULE,
.ctr = zero_ctr,
.map = zero_map,
};
map is a key callback - it's a heart of every device-mapper target. map receive incoming bio and it can do anything with it. For example, dm-linear just shift sector of every incoming bio by predefined offset. See the code:
static sector_t linear_map_sector(struct dm_target *ti, sector_t bi_sector)
{
struct linear_c *lc = ti->private;
return lc->start + dm_target_offset(ti, bi_sector);
}
static void linear_map_bio(struct dm_target *ti, struct bio *bio)
{
struct linear_c *lc = ti->private;
bio->bi_bdev = lc->dev->bdev;
if (bio_sectors(bio))
bio->bi_sector = linear_map_sector(ti, bio->bi_sector);
}
static int linear_map(struct dm_target *ti, struct bio *bio)
{
linear_map_bio(ti, bio);
return DM_MAPIO_REMAPPED;
}
Because map receives pointer to bio it can change value under that pointer and that's it.
That's how you map I/O requests. If you want to create your own requests then you must allocate bio, fill it's sector, device, size, end callback and add buffers to read into/write from. Basically, it's just a few steps:
Call to bio_alloc to allocate bio.
Set bio->bi_bdev, bio->bi_sector, bio->bi_size, bio->bi_end_io
Add pages via bio_add_page.
Call submit_bio.
Handle results and errors in bio->bi_end_io callback
Example can be found in dm-crypt target in crypt_alloc_buffer function.

Identifying the EINVAL in a Kernel Control ctl_enqueuedata call

I want to send messages from a kernel extension into a userland program using kernel controls. I'm experiencing an EINVAL error when calling ctl_enqueuedata.
I've set up a Kernel Control and I'm trying to send messages through it using ctl_enqueuedata. I'm setting
ep_ctl.ctl_flags = 0
before passing to ctl_register, which, the documents suggest, should result in ctl_unit being automatically set.
To quote kern_control.h:
For a dynamically assigned control ID, do not set the CTL_FLAG_REG_ID_UNIT flag.
static struct kern_ctl_reg ep_ctl;
static kern_ctl_ref kctlref;
...
errno_t error;
bzero(&ep_ctl, sizeof(ep_ctl)); // sets ctl_unit to 0
ep_ctl.ctl_id = 0;
ep_ctl.ctl_unit = 0;
strncpy(ep_ctl.ctl_name, CONTROL_NAME, strlen(CONTROL_NAME));
ep_ctl.ctl_flags = 0x0; // not CTL_FLAG_REG_ID_UNIT so unit gets supplied. Not CTL_FLAG_PRIVILEGED either.
ep_ctl.ctl_send = EPHandleSend;
ep_ctl.ctl_getopt = EPHandleGet;
ep_ctl.ctl_setopt = EPHandleSet;
ep_ctl.ctl_connect = EPHandleConnect;
ep_ctl.ctl_disconnect = EPHandleDisconnect;
error = ctl_register(&ep_ctl, &kctlref);
printf("setupControl %d\n", error);
When I call ctl_register it returns 0 ok.
When I call ctl_enqueuedata, passing in my struct kern_ctl_reg I'm getting 22, which is EINVAL. One of those arguments appears to be incorrect. The other arguments I'm passing are a static test string and its length for data, and zero flags.
int result = ctl_enqueuedata(kctlref, ep_ctl.ctl_unit, filename, length, 0x0);
The value of my ep_ctl's .ctl_unit is 0, the value of .ctl_id is 6. Could it be that the ctl_unit value being passed to ctl_enqueuedata is invalid / un-initialized?
kern_control.h says of ctl_unit:
This field is ignored for a dynamically assigned control ID
Which suggests that it isn't required anyway?
Have I missed something in initializing my ep_ctl?
I believe you supply wrong value as the 2nd parameter of ctl_enqueuedata(). Instead of ep_ctl.ctl_unit, you have to remember struct sockaddr_ctl::sc_unit in the EPHandleConnect() callback and that's what you are supposed to pass into ctl_enqueuedata().
I suggest using OSX's kernel debugging facilities to figure out what's going on here. That will let you walk through the relevant kernel code, and should tell you where it's rejecting your input.

Resources