Codility Peaks Complexity - algorithm

I've just done the following Codility Peaks problem. The problem is as follows:
A non-empty zero-indexed array A consisting of N integers is given.
A peak is an array element which is larger than its neighbors. More precisely, it is an index P such that 0 < P < N − 1, A[P − 1] < A[P] and A[P] > A[P + 1].
For example, the following array A:
A[0] = 1
A[1] = 2
A[2] = 3
A[3] = 4
A[4] = 3
A[5] = 4
A[6] = 1
A[7] = 2
A[8] = 3
A[9] = 4
A[10] = 6
A[11] = 2
has exactly three peaks: 3, 5, 10.
We want to divide this array into blocks containing the same number of elements. More precisely, we want to choose a number K that will yield the following blocks:
A[0], A[1], ..., A[K − 1],
A[K], A[K + 1], ..., A[2K − 1],
...
A[N − K], A[N − K + 1], ..., A[N − 1].
What's more, every block should contain at least one peak. Notice that extreme elements of the blocks (for example A[K − 1] or A[K]) can also be peaks, but only if they have both neighbors (including one in an adjacent blocks).
The goal is to find the maximum number of blocks into which the array A can be divided.
Array A can be divided into blocks as follows:
one block (1, 2, 3, 4, 3, 4, 1, 2, 3, 4, 6, 2). This block contains three peaks.
two blocks (1, 2, 3, 4, 3, 4) and (1, 2, 3, 4, 6, 2). Every block has a peak.
three blocks (1, 2, 3, 4), (3, 4, 1, 2), (3, 4, 6, 2). Every block has a peak.
Notice in particular that the first block (1, 2, 3, 4) has a peak at A[3], because A[2] < A[3] > A[4], even though A[4] is in the adjacent block.
However, array A cannot be divided into four blocks, (1, 2, 3), (4, 3, 4), (1, 2, 3) and (4, 6, 2), because the (1, 2, 3) blocks do not contain a peak. Notice in particular that the (4, 3, 4) block contains two peaks: A[3] and A[5].
The maximum number of blocks that array A can be divided into is three.
Write a function:
class Solution { public int solution(int[] A); }
that, given a non-empty zero-indexed array A consisting of N integers, returns the maximum number of blocks into which A can be divided.
If A cannot be divided into some number of blocks, the function should return 0.
For example, given:
A[0] = 1
A[1] = 2
A[2] = 3
A[3] = 4
A[4] = 3
A[5] = 4
A[6] = 1
A[7] = 2
A[8] = 3
A[9] = 4
A[10] = 6
A[11] = 2
the function should return 3, as explained above.
Assume that:
N is an integer within the range [1..100,000];
each element of array A is an integer within the range [0..1,000,000,000].
Complexity:
expected worst-case time complexity is O(N*log(log(N)))
expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).
Elements of input arrays can be modified.
My Question
So I solve this with what to me appears to be the brute force solution – go through every group size from 1..N, and check whether every group has at least one peak. The first 15 minutes I was trying to solve this I was trying to figure out some more optimal way, since the required complexity is O(N*log(log(N))).
This is my "brute-force" code that passes all the tests, including the large ones, for a score of 100/100:
public int solution(int[] A) {
int N = A.length;
ArrayList<Integer> peaks = new ArrayList<Integer>();
for(int i = 1; i < N-1; i++){
if(A[i] > A[i-1] && A[i] > A[i+1]) peaks.add(i);
}
for(int size = 1; size <= N; size++){
if(N % size != 0) continue;
int find = 0;
int groups = N/size;
boolean ok = true;
for(int peakIdx : peaks){
if(peakIdx/size > find){
ok = false;
break;
}
if(peakIdx/size == find) find++;
}
if(find != groups) ok = false;
if(ok) return groups;
}
return 0;
}
My question is how do I deduce that this is in fact O(N*log(log(N))), as it's not at all obvious to me, and I was surprised I pass the test cases. I'm looking for even the simplest complexity proof sketch that would convince me of this runtime. I would assume that a log(log(N)) factor means some kind of reduction of a problem by a square root on each iteration, but I have no idea how this applies to my problem. Thanks a lot for any help

You're completely right: to get the log log performance the problem needs to be reduced.
A n.log(log(n)) solution in python [below]. Codility no longer test 'performance' on this problem (!) but the python solution scores 100% for accuracy.
As you've already surmised:
Outer loop will be O(n) since it is testing whether each size of block is a clean divisor
Inner loop must be O(log(log(n))) to give O(n log(log(n))) overall.
We can get good inner loop performance because we only need to perform d(n), the number of divisors of n. We can store a prefix sum of peaks-so-far, which uses the O(n) space allowed by the problem specification. Checking whether a peak has occurred in each 'group' is then an O(1) lookup operation using the group start and end indices.
Following this logic, when the candidate block size is 3 the loop needs to perform n / 3 peak checks. The complexity becomes a sum: n/a + n/b + ... + n/n where the denominators (a, b, ...) are the factors of n.
Short story: The complexity of n.d(n) operations is O(n.log(log(n))).
Longer version:
If you've been doing the Codility Lessons you'll remember from the Lesson 8: Prime and composite numbers that the sum of harmonic number operations will give O(log(n)) complexity. We've got a reduced set, because we're only looking at factor denominators. Lesson 9: Sieve of Eratosthenes shows how the sum of reciprocals of primes is O(log(log(n))) and claims that 'the proof is non-trivial'. In this case Wikipedia tells us that the sum of divisors sigma(n) has an upper bound (see Robin's inequality, about half way down the page).
Does that completely answer your question? Suggestions on how to improve my python code are also very welcome!
def solution(data):
length = len(data)
# array ends can't be peaks, len < 3 must return 0
if len < 3:
return 0
peaks = [0] * length
# compute a list of 'peaks to the left' in O(n) time
for index in range(2, length):
peaks[index] = peaks[index - 1]
# check if there was a peak to the left, add it to the count
if data[index - 1] > data[index - 2] and data[index - 1] > data[index]:
peaks[index] += 1
# candidate is the block size we're going to test
for candidate in range(3, length + 1):
# skip if not a factor
if length % candidate != 0:
continue
# test at each point n / block
valid = True
index = candidate
while index != length:
# if no peak in this block, break
if peaks[index] == peaks[index - candidate]:
valid = False
break
index += candidate
# one additional check since peaks[length] is outside of array
if index == length and peaks[index - 1] == peaks[index - candidate]:
valid = False
if valid:
return length / candidate
return 0
Credits:
Major kudos to #tmyklebu for his SO answer which helped me a lot.

I'm don't think that the time complexity of your algorithm is O(Nlog(logN)).
However, it is certainly much lesser than O(N^2). This is because your inner loop is entered only k times where k is the number of factors of N. The number of factors of an integer can be seen in this link: http://www.cut-the-knot.org/blue/NumberOfFactors.shtml
I may be inaccurate but from the link it seems,
k ~ logN * logN * logN ...
Also, the inner loop has a complexity of O(N) since the number of peaks can be N/2 in the worst case.
Hence, in my opinion, the complexity of your algorithm is O(NlogN) at best but it must be sufficient to clear all test cases.

#radicality
There's at least one point where you can optimize the number of passes in the second loop to O(sqrt(N)) -- collect divisors of N and iterate through them only.
That will make your algo a little less "brute force".
Problem definition allows for O(N) space complexity. You can store divisors without violating this condition.

This is my solution based on prefix sums. Hope it helps:
class Solution {
public int solution(int[] A) {
int n = A.length;
int result = 1;
if (n < 3)
return 0;
int[] prefixSums = new int[n];
for (int i = 1; i < n-1; i++)
if (A[i] > A[i-1] && A[i] > A[i+1])
prefixSums[i] = prefixSums[i-1] + 1;
else
prefixSums[i] = prefixSums[i-1];
prefixSums[n-1] = prefixSums[n-2];
if (prefixSums[n-1] <= 1)
return prefixSums[n-1];
for (int i = 2; i <= prefixSums[n-2]; i++) {
if (n % i != 0)
continue;
int prev = 0;
boolean containsPeak = true;
for (int j = n/i - 1; j < n; j += n/i) {
if (prefixSums[j] == prev) {
containsPeak = false;
break;
}
prev = prefixSums[j];
}
if (containsPeak)
result = i;
}
return result;
}
}

def solution(A):
length = len(A)
if length <= 2:
return 0
peek_indexes = []
for index in range(1, length-1):
if A[index] > A[index - 1] and A[index] > A[index + 1]:
peek_indexes.append(index)
for block in range(3, int((length/2)+1)):
if length % block == 0:
index_to_check = 0
temp_blocks = 0
for peek_index in peek_indexes:
if peek_index >= index_to_check and peek_index < index_to_check + block:
temp_blocks += 1
index_to_check = index_to_check + block
if length/block == temp_blocks:
return temp_blocks
if len(peek_indexes) > 0:
return 1
else:
return 0
print(solution([1, 2, 3, 4, 3, 4, 1, 2, 3, 4, 6, 2, 1, 2, 5, 2]))

I just found the factors at first,
then just iterated in A and tested all number of blocks to see which is the greatest block division.
This is the code that got 100 (in java)
https://app.codility.com/demo/results/training9593YB-39H/

A javascript solution with complexity of O(N * log(log(N))).
function solution(A) {
let N = A.length;
if (N < 3) return 0;
let peaks = 0;
let peaksTillNow = [ 0 ];
let dividers = [];
for (let i = 1; i < N - 1; i++) {
if (A[i - 1] < A[i] && A[i] > A[i + 1]) peaks++;
peaksTillNow.push(peaks);
if (N % i === 0) dividers.push(i);
}
peaksTillNow.push(peaks);
if (peaks === 0) return 0;
let blocks;
let result = 1;
for (blocks of dividers) {
let K = N / blocks;
let prevPeaks = 0;
let OK = true;
for (let i = 1; i <= blocks; i++) {
if (peaksTillNow[i * K - 1] > prevPeaks) {
prevPeaks = peaksTillNow[i * K - 1];
} else {
OK = false;
break;
}
}
if (OK) result = blocks;
}
return result;
}

Solution with C# code
public int GetPeaks(int[] InputArray)
{
List<int> lstPeaks = new List<int>();
lstPeaks.Add(0);
for (int Index = 1; Index < (InputArray.Length - 1); Index++)
{
if (InputArray[Index - 1] < InputArray[Index] && InputArray[Index] > InputArray[Index + 1])
{
lstPeaks.Add(1);
}
else
{
lstPeaks.Add(0);
}
}
lstPeaks.Add(0);
int totalEqBlocksWithPeaks = 0;
for (int factor = 1; factor <= InputArray.Length; factor++)
{
if (InputArray.Length % factor == 0)
{
int BlockLength = InputArray.Length / factor;
int BlockCount = factor;
bool isAllBlocksHasPeak = true;
for (int CountIndex = 1; CountIndex <= BlockCount; CountIndex++)
{
int BlockStartIndex = CountIndex == 1 ? 0 : (CountIndex - 1) * BlockLength;
int BlockEndIndex = (CountIndex * BlockLength) - 1;
if (!(lstPeaks.GetRange(BlockStartIndex, BlockLength).Sum() > 0))
{
isAllBlocksHasPeak = false;
}
}
if (isAllBlocksHasPeak)
totalEqBlocksWithPeaks++;
}
}
return totalEqBlocksWithPeaks;
}

There is actually an O(n) runtime complexity solution for this task, so this is a humble attempt to share that.
The trick to go from the proposed O(n * loglogn) solutions to O(n) is to calculate the maximum gap between any two peaks (or a leading or trailing peak to the corresponding endpoint).
This can be done while building the peak hash in the first O(n) loop.
Then, if the gap is 'g' between two consecutive peaks, then the minimum group size must be 'g/2'. It will simply be 'g' between start and first peak, or last peak and end. Also, there will be at least one peak in any group from group size 'g', so the range to check for is: g/2, 1+g/2, 2+g/2, ... g.
Therefore, the runtime is the sum over d = g/2, g/2+1, ... g) * n/d where 'd' is the divisor'.
(sum over d = g/2, 1 + g/2, ... g) * n/d = n/(g/2) + n/(1 + g/2) + ... + (n/g)
if g = 5, this n/5 + n/6 + n/7 + n/8 + n/9 + n/10 = n(1/5+1/6+1/7+1/8+1/9+1/10)
If you replace each item with the largest element, then you get sum <= n * (1/5 + 1/5 + 1/5 + 1/5 + 1/5) = n
Now, generalising this, every element is replaced with n / (g/2).
The number of items from g/2 to g is 1 + g/2 since there are (g - g/2 + 1) items.
So, the whole sum is: n/(g/2) * (g/2 + 1) = n + 2n/g < 3n.
Therefore, the bound on the total number of operations is O(n).
The code, implementing this in C++, is here:
int solution(vector<int> &A)
{
int sizeA = A.size();
vector<bool> hash(sizeA, false);
int min_group_size = 2;
int pi = 0;
for (int i = 1, pi = 0; i < sizeA - 1; ++i) {
const int e = A[i];
if (e > A[i - 1] && e > A[i + 1]) {
hash[i] = true;
int diff = i - pi;
if (pi) diff /= 2;
if (diff > min_group_size) min_group_size = diff;
pi = i;
}
}
min_group_size = min(min_group_size, sizeA - pi);
vector<int> hash_next(sizeA, 0);
for (int i = sizeA - 2; i >= 0; --i) {
hash_next[i] = hash[i] ? i : hash_next[i + 1];
}
for (int group_size = min_group_size; group_size <= sizeA; ++group_size) {
if (sizeA % group_size != 0) continue;
int number_of_groups = sizeA / group_size;
int group_index = 0;
for (int peak_index = 0; peak_index < sizeA; peak_index = group_index * group_size) {
peak_index = hash_next[peak_index];
if (!peak_index) break;
int lower_range = group_index * group_size;
int upper_range = lower_range + group_size - 1;
if (peak_index > upper_range) {
break;
}
++group_index;
}
if (number_of_groups == group_index) return number_of_groups;
}
return 0;
}

var prev, curr, total = 0;
for (var i=1; i<A.length; i++) {
if (curr == 0) {
curr = A[i];
} else {
if(A[i] != curr) {
if (prev != 0) {
if ((prev < curr && A[i] < curr) || (prev > curr && A[i] > curr)) {
total += 1;
}
} else {
prev = curr;
total += 1;
}
prev = curr;
curr = A[i];
}
}
}
if(prev != curr) {
total += 1;
}
return total;

I agree with GnomeDePlume answer... the piece on looking for the divisors on the proposed solution is O(N), and that could be decreased to O(sqrt(N)) by using the algorithm provided on the lesson text.
So just adding, here is my solution using Java that solves the problem on the required complexity.
Be aware, it has way more code then yours - some cleanup (debug sysouts and comments) would always be possible :-)
public int solution(int[] A) {
int result = 0;
int N = A.length;
// mark accumulated peaks
int[] peaks = new int[N];
int count = 0;
for (int i = 1; i < N -1; i++) {
if (A[i-1] < A[i] && A[i+1] < A[i])
count++;
peaks[i] = count;
}
// set peaks count on last elem as it will be needed during div checks
peaks[N-1] = count;
// check count
if (count > 0) {
// if only one peak, will need the whole array
if (count == 1)
result = 1;
else {
// at this point (peaks > 1) we know at least the single group will satisfy the criteria
// so set result to 1, then check for bigger numbers of groups
result = 1;
// for each divisor of N, check if that number of groups work
Integer[] divisors = getDivisors(N);
// result will be at least 1 at this point
boolean candidate;
int divisor, startIdx, endIdx;
// check from top value to bottom - stop when one is found
// for div 1 we know num groups is 1, and we already know that is the minimum. No need to check.
// for div = N we know it's impossible, as all elements would have to be peaks (impossible by definition)
for (int i = divisors.length-2; i > 0; i--) {
candidate = true;
divisor = divisors[i];
for (int j = 0; j < N; j+= N/divisor) {
startIdx = (j == 0 ? j : j-1);
endIdx = j + N/divisor-1;
if (peaks[startIdx] == peaks[endIdx]) {
candidate = false;
break;
}
}
// if all groups had at least 1 peak, this is the result!
if (candidate) {
result = divisor;
break;
}
}
}
}
return result;
}
// returns ordered array of all divisors of N
private Integer[] getDivisors(int N) {
Set<Integer> set = new TreeSet<Integer>();
double sqrt = Math.sqrt(N);
int i = 1;
for (; i < sqrt; i++) {
if (N % i == 0) {
set.add(i);
set.add(N/i);
}
}
if (i * i == N)
set.add(i);
return set.toArray(new Integer[]{});
}
Thanks,
Davi

Related

Maximum subarray sum modulo M

Most of us are familiar with the maximum sum subarray problem. I came across a variant of this problem which asks the programmer to output the maximum of all subarray sums modulo some number M.
The naive approach to solve this variant would be to find all possible subarray sums (which would be of the order of N^2 where N is the size of the array). Of course, this is not good enough. The question is - how can we do better?
Example: Let us consider the following array:
6 6 11 15 12 1
Let M = 13. In this case, subarray 6 6 (or 12 or 6 6 11 15 or 11 15 12) will yield maximum sum ( = 12 ).
We can do this as follow:
Maintaining an array sum which at index ith, it contains the modulus sum from 0 to ith.
For each index ith, we need to find the maximum sub sum that end at this index:
For each subarray (start + 1 , i ), we know that the mod sum of this sub array is
int a = (sum[i] - sum[start] + M) % M
So, we can only achieve a sub-sum larger than sum[i] if sum[start] is larger than sum[i] and as close to sum[i] as possible.
This can be done easily if you using a binary search tree.
Pseudo code:
int[] sum;
sum[0] = A[0];
Tree tree;
tree.add(sum[0]);
int result = sum[0];
for(int i = 1; i < n; i++){
sum[i] = sum[i - 1] + A[i];
sum[i] %= M;
int a = tree.getMinimumValueLargerThan(sum[i]);
result = max((sum[i] - a + M) % M, result);
tree.add(sum[i]);
}
print result;
Time complexity :O(n log n)
Let A be our input array with zero-based indexing. We can reduce A modulo M without changing the result.
First of all, let's reduce the problem to a slightly easier one by computing an array P representing the prefix sums of A, modulo M:
A = 6 6 11 2 12 1
P = 6 12 10 12 11 12
Now let's process the possible left borders of our solution subarrays in decreasing order. This means that we will first determine the optimal solution that starts at index n - 1, then the one that starts at index n - 2 etc.
In our example, if we chose i = 3 as our left border, the possible subarray sums are represented by the suffix P[3..n-1] plus a constant a = A[i] - P[i]:
a = A[3] - P[3] = 2 - 12 = 3 (mod 13)
P + a = * * * 2 1 2
The global maximum will occur at one point too. Since we can insert the suffix values from right to left, we have now reduced the problem to the following:
Given a set of values S and integers x and M, find the maximum of S + x modulo M
This one is easy: Just use a balanced binary search tree to manage the elements of S. Given a query x, we want to find the largest value in S that is smaller than M - x (that is the case where no overflow occurs when adding x). If there is no such value, just use the largest value of S. Both can be done in O(log |S|) time.
Total runtime of this solution: O(n log n)
Here's some C++ code to compute the maximum sum. It would need some minor adaptions to also return the borders of the optimal subarray:
#include <bits/stdc++.h>
using namespace std;
int max_mod_sum(const vector<int>& A, int M) {
vector<int> P(A.size());
for (int i = 0; i < A.size(); ++i)
P[i] = (A[i] + (i > 0 ? P[i-1] : 0)) % M;
set<int> S;
int res = 0;
for (int i = A.size() - 1; i >= 0; --i) {
S.insert(P[i]);
int a = (A[i] - P[i] + M) % M;
auto it = S.lower_bound(M - a);
if (it != begin(S))
res = max(res, *prev(it) + a);
res = max(res, (*prev(end(S)) + a) % M);
}
return res;
}
int main() {
// random testing to the rescue
for (int i = 0; i < 1000; ++i) {
int M = rand() % 1000 + 1, n = rand() % 1000 + 1;
vector<int> A(n);
for (int i = 0; i< n; ++i)
A[i] = rand() % M;
int should_be = 0;
for (int i = 0; i < n; ++i) {
int sum = 0;
for (int j = i; j < n; ++j) {
sum = (sum + A[j]) % M;
should_be = max(should_be, sum);
}
}
assert(should_be == max_mod_sum(A, M));
}
}
For me, all explanations here were awful, since I didn't get the searching/sorting part. How do we search/sort, was unclear.
We all know that we need to build prefixSum, meaning sum of all elems from 0 to i with modulo m
I guess, what we are looking for is clear.
Knowing that subarray[i][j] = (prefix[i] - prefix[j] + m) % m (indicating the modulo sum from index i to j), our maxima when given prefix[i] is always that prefix[j] which is as close as possible to prefix[i], but slightly bigger.
E.g. for m = 8, prefix[i] being 5, we are looking for the next value after 5, which is in our prefixArray.
For efficient search (binary search) we sort the prefixes.
What we can not do is, build the prefixSum first, then iterate again from 0 to n and look for index in the sorted prefix array, because we can find and endIndex which is smaller than our startIndex, which is no good.
Therefore, what we do is we iterate from 0 to n indicating the endIndex of our potential max subarray sum and then look in our sorted prefix array, (which is empty at the beginning) which contains sorted prefixes between 0 and endIndex.
def maximumSum(coll, m):
n = len(coll)
maxSum, prefixSum = 0, 0
sortedPrefixes = []
for endIndex in range(n):
prefixSum = (prefixSum + coll[endIndex]) % m
maxSum = max(maxSum, prefixSum)
startIndex = bisect.bisect_right(sortedPrefixes, prefixSum)
if startIndex < len(sortedPrefixes):
maxSum = max(maxSum, prefixSum - sortedPrefixes[startIndex] + m)
bisect.insort(sortedPrefixes, prefixSum)
return maxSum
From your question, it seems that you have created an array to store the cumulative sums (Prefix Sum Array), and are calculating the sum of the sub-array arr[i:j] as (sum[j] - sum[i] + M) % M. (arr and sum denote the given array and the prefix sum array respectively)
Calculating the sum of every sub-array results in a O(n*n) algorithm.
The question that arises is -
Do we really need to consider the sum of every sub-array to reach the desired maximum?
No!
For a value of j the value (sum[j] - sum[i] + M) % M will be maximum when sum[i] is just greater than sum[j] or the difference is M - 1.
This would reduce the algorithm to O(nlogn).
You can take a look at this explanation! https://www.youtube.com/watch?v=u_ft5jCDZXk
There are already a bunch of great solutions listed here, but I wanted to add one that has O(nlogn) runtime without using a balanced binary tree, which isn't in the Python standard library. This solution isn't my idea, but I had to think a bit as to why it worked. Here's the code, explanation below:
def maximumSum(a, m):
prefixSums = [(0, -1)]
for idx, el in enumerate(a):
prefixSums.append(((prefixSums[-1][0] + el) % m, idx))
prefixSums = sorted(prefixSums)
maxSeen = prefixSums[-1][0]
for (a, a_idx), (b, b_idx) in zip(prefixSums[:-1], prefixSums[1:]):
if a_idx > b_idx and b > a:
maxSeen = max((a-b) % m, maxSeen)
return maxSeen
As with the other solutions, we first calculate the prefix sums, but this time we also keep track of the index of the prefix sum. We then sort the prefix sums, as we want to find the smallest difference between prefix sums modulo m - sorting lets us just look at adjacent elements as they have the smallest difference.
At this point you might think we're neglecting an essential part of the problem - we want the smallest difference between prefix sums, but the larger prefix sum needs to appear before the smaller prefix sum (meaning it has a smaller index). In the solutions using trees, we ensure that by adding prefix sums one by one and recalculating the best solution.
However, it turns out that we can look at adjacent elements and just ignore ones that don't satisfy our index requirement. This confused me for some time, but the key realization is that the optimal solution will always come from two adjacent elements. I'll prove this via a contradiction. Let's say that the optimal solution comes from two non-adjacent prefix sums x and z with indices i and k, where z > x (it's sorted!) and k > i:
x ... z
k ... i
Let's consider one of the numbers between x and z, and let's call it y with index j. Since the list is sorted, x < y < z.
x ... y ... z
k ... j ... i
The prefix sum y must have index j < i, otherwise it would be part of a better solution with z. But if j < i, then j < k and y and x form a better solution than z and x! So any elements between x and z must form a better solution with one of the two, which contradicts our original assumption. Therefore the optimal solution must come from adjacent prefix sums in the sorted list.
Here is Java code for maximum sub array sum modulo. We handle the case we can not find least element in the tree strictly greater than s[i]
public static long maxModulo(long[] a, final long k) {
long[] s = new long[a.length];
TreeSet<Long> tree = new TreeSet<>();
s[0] = a[0] % k;
tree.add(s[0]);
long result = s[0];
for (int i = 1; i < a.length; i++) {
s[i] = (s[i - 1] + a[i]) % k;
// find least element in the tree strictly greater than s[i]
Long v = tree.higher(s[i]);
if (v == null) {
// can't find v, then compare v and s[i]
result = Math.max(s[i], result);
} else {
result = Math.max((s[i] - v + k) % k, result);
}
tree.add(s[i]);
}
return result;
}
Few points from my side that might hopefully help someone understand the problem better.
You do not need to add +M to the modulo calculation, as mentioned, % operator handles negative numbers well, so a % M = (a + M) % M
As mentioned, the trick is to build the proxy sum table such that
proxy[n] = (a[1] + ... a[n]) % M
This then allows one to represent the maxSubarraySum[i, j] as
maxSubarraySum[i, j] = (proxy[j] - proxy[j]) % M
The implementation trick is to build the proxy table as we iterate through the elements, instead of first pre-building it and then using. This is because for each new element in the array a[i] we want to compute proxy[i] and find proxy[j] that is bigger than but as close as possible to proxy[i] (ideally bigger by 1 because this results in a reminder of M - 1). For this we need to use a clever data structure for building proxy table while keeping it sorted and
being able to quickly find a closest bigger element to proxy[i]. bisect.bisect_right is a good choice in Python.
See my Python implementation below (hope this helps but I am aware this might not necessarily be as concise as others' solutions):
def maximumSum(a, m):
prefix_sum = [a[0] % m]
prefix_sum_sorted = [a[0] % m]
current_max = prefix_sum_sorted[0]
for elem in a[1:]:
prefix_sum_next = (prefix_sum[-1] + elem) % m
prefix_sum.append(prefix_sum_next)
idx_closest_bigger = bisect.bisect_right(prefix_sum_sorted, prefix_sum_next)
if idx_closest_bigger >= len(prefix_sum_sorted):
current_max = max(current_max, prefix_sum_next)
bisect.insort_right(prefix_sum_sorted, prefix_sum_next)
continue
if prefix_sum_sorted[idx_closest_bigger] > prefix_sum_next:
current_max = max(current_max, (prefix_sum_next - prefix_sum_sorted[idx_closest_bigger]) % m)
bisect.insort_right(prefix_sum_sorted, prefix_sum_next)
return current_max
Total java implementation with O(n*log(n))
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.TreeSet;
import java.util.stream.Stream;
public class MaximizeSumMod {
public static void main(String[] args) throws Exception{
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
Long times = Long.valueOf(in.readLine());
while(times --> 0){
long[] pair = Stream.of(in.readLine().split(" ")).mapToLong(Long::parseLong).toArray();
long mod = pair[1];
long[] numbers = Stream.of(in.readLine().split(" ")).mapToLong(Long::parseLong).toArray();
printMaxMod(numbers,mod);
}
}
private static void printMaxMod(long[] numbers, Long mod) {
Long maxSoFar = (numbers[numbers.length-1] + numbers[numbers.length-2])%mod;
maxSoFar = (maxSoFar > (numbers[0]%mod)) ? maxSoFar : numbers[0]%mod;
numbers[0] %=mod;
for (Long i = 1L; i < numbers.length; i++) {
long currentNumber = numbers[i.intValue()]%mod;
maxSoFar = maxSoFar > currentNumber ? maxSoFar : currentNumber;
numbers[i.intValue()] = (currentNumber + numbers[i.intValue()-1])%mod;
maxSoFar = maxSoFar > numbers[i.intValue()] ? maxSoFar : numbers[i.intValue()];
}
if(mod.equals(maxSoFar+1) || numbers.length == 2){
System.out.println(maxSoFar);
return;
}
long previousNumber = numbers[0];
TreeSet<Long> set = new TreeSet<>();
set.add(previousNumber);
for (Long i = 2L; i < numbers.length; i++) {
Long currentNumber = numbers[i.intValue()];
Long ceiling = set.ceiling(currentNumber);
if(ceiling == null){
set.add(numbers[i.intValue()-1]);
continue;
}
if(ceiling.equals(currentNumber)){
set.remove(ceiling);
Long greaterCeiling = set.ceiling(currentNumber);
if(greaterCeiling == null){
set.add(ceiling);
set.add(numbers[i.intValue()-1]);
continue;
}
set.add(ceiling);
ceiling = greaterCeiling;
}
Long newMax = (currentNumber - ceiling + mod);
maxSoFar = maxSoFar > newMax ? maxSoFar :newMax;
set.add(numbers[i.intValue()-1]);
}
System.out.println(maxSoFar);
}
}
Adding STL C++11 code based on the solution suggested by #Pham Trung. Might be handy.
#include <iostream>
#include <set>
int main() {
int N;
std::cin>>N;
for (int nn=0;nn<N;nn++){
long long n,m;
std::set<long long> mSet;
long long maxVal = 0; //positive input values
long long sumVal = 0;
std::cin>>n>>m;
mSet.insert(m);
for (long long q=0;q<n;q++){
long long tmp;
std::cin>>tmp;
sumVal = (sumVal + tmp)%m;
auto itSub = mSet.upper_bound(sumVal);
maxVal = std::max(maxVal,(m + sumVal - *itSub)%m);
mSet.insert(sumVal);
}
std::cout<<maxVal<<"\n";
}
}
As you can read in Wikipedia exists a solution called Kadane's algorithm, which compute the maximum subarray sum watching ate the maximum subarray ending at position i for all positions i by iterating once over the array. Then this solve the problem with with runtime complexity O(n).
Unfortunately, I think that Kadane's algorithm isn't able to find all possible solution when more than one solution exists.
An implementation in Java, I didn't tested it:
public int[] kadanesAlgorithm (int[] array) {
int start_old = 0;
int start = 0;
int end = 0;
int found_max = 0;
int max = array[0];
for(int i = 0; i<array.length; i++) {
max = Math.max(array[i], max + array[i]);
found_max = Math.max(found_max, max);
if(max < 0)
start = i+1;
else if(max == found_max) {
start_old=start;
end = i;
}
}
return Arrays.copyOfRange(array, start_old, end+1);
}
I feel my thoughts are aligned with what have been posted already, but just in case - Kotlin O(NlogN) solution:
val seen = sortedSetOf(0L)
var prev = 0L
return max(a.map { x ->
val z = (prev + x) % m
prev = z
seen.add(z)
seen.higher(z)?.let{ y ->
(z - y + m) % m
} ?: z
})
Implementation in java using treeset...
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.TreeSet;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader read = new BufferedReader(new InputStreamReader(System.in)) ;
String[] str = read.readLine().trim().split(" ") ;
int n = Integer.parseInt(str[0]) ;
long m = Long.parseLong(str[1]) ;
str = read.readLine().trim().split(" ") ;
long[] arr = new long[n] ;
for(int i=0; i<n; i++) {
arr[i] = Long.parseLong(str[i]) ;
}
long maxCount = 0L ;
TreeSet<Long> tree = new TreeSet<>() ;
tree.add(0L) ;
long prefix = 0L ;
for(int i=0; i<n; i++) {
prefix = (prefix + arr[i]) % m ;
maxCount = Math.max(prefix, maxCount) ;
Long temp = tree.higher(prefix) ;
System.out.println(temp);
if(temp != null) {
maxCount = Math.max((prefix-temp+m)%m, maxCount) ;
}
//System.out.println(maxCount);
tree.add(prefix) ;
}
System.out.println(maxCount);
}
}
Here is one implementation of solution in java for this problem which works using TreeSet in java for optimized solution !
public static long maximumSum2(long[] arr, long n, long m)
{
long x = 0;
long prefix = 0;
long maxim = 0;
TreeSet<Long> S = new TreeSet<Long>();
S.add((long)0);
// Traversing the array.
for (int i = 0; i < n; i++)
{
// Finding prefix sum.
prefix = (prefix + arr[i]) % m;
// Finding maximum of prefix sum.
maxim = Math.max(maxim, prefix);
// Finding iterator poing to the first
// element that is not less than value
// "prefix + 1", i.e., greater than or
// equal to this value.
long it = S.higher(prefix)!=null?S.higher(prefix):0;
// boolean isFound = false;
// for (long j : S)
// {
// if (j >= prefix + 1)
// if(isFound == false) {
// it = j;
// isFound = true;
// }
// else {
// if(j < it) {
// it = j;
// }
// }
// }
if (it != 0)
{
maxim = Math.max(maxim, prefix - it + m);
}
// adding prefix in the set.
S.add(prefix);
}
return maxim;
}
public static int MaxSequence(int[] arr)
{
int maxSum = 0;
int partialSum = 0;
int negative = 0;
for (int i = 0; i < arr.Length; i++)
{
if (arr[i] < 0)
{
negative++;
}
}
if (negative == arr.Length)
{
return 0;
}
foreach (int item in arr)
{
partialSum += item;
maxSum = Math.Max(maxSum, partialSum);
if (partialSum < 0)
{
partialSum = 0;
}
}
return maxSum;
}
Modify Kadane algorithm to keep track of #occurrence. Below is the code.
#python3
#source: https://github.com/harishvc/challenges/blob/master/dp-largest-sum-sublist-modulo.py
#Time complexity: O(n)
#Space complexity: O(n)
def maxContiguousSum(a,K):
sum_so_far =0
max_sum = 0
count = {} #keep track of occurrence
for i in range(0,len(a)):
sum_so_far += a[i]
sum_so_far = sum_so_far%K
if sum_so_far > 0:
max_sum = max(max_sum,sum_so_far)
if sum_so_far in count.keys():
count[sum_so_far] += 1
else:
count[sum_so_far] = 1
else:
assert sum_so_far < 0 , "Logic error"
#IMPORTANT: reset sum_so_far
sum_so_far = 0
return max_sum,count[max_sum]
a = [6, 6, 11, 15, 12, 1]
K = 13
max_sum,count = maxContiguousSum(a,K)
print("input >>> %s max sum=%d #occurrence=%d" % (a,max_sum,count))

Finding minimal absolute sum of a subarray

There's an array A containing (positive and negative) integers. Find a (contiguous) subarray whose elements' absolute sum is minimal, e.g.:
A = [2, -4, 6, -3, 9]
|(−4) + 6 + (−3)| = 1 <- minimal absolute sum
I've started by implementing a brute-force algorithm which was O(N^2) or O(N^3), though it produced correct results. But the task specifies:
complexity:
- expected worst-case time complexity is O(N*log(N))
- expected worst-case space complexity is O(N)
After some searching I thought that maybe Kadane's algorithm can be modified to fit this problem but I failed to do it.
My question is - is Kadane's algorithm the right way to go? If not, could you point me in the right direction (or name an algorithm that could help me here)? I don't want a ready-made code, I just need help in finding the right algorithm.
If you compute the partial sums
such as
2, 2 +(-4), 2 + (-4) + 6, 2 + (-4) + 6 + (-3)...
Then the sum of any contiguous subarray is the difference of two of the partial sums. So to find the contiguous subarray whose absolute value is minimal, I suggest that you sort the partial sums and then find the two values which are closest together, and use the positions of these two partial sums in the original sequence to find the start and end of the sub-array with smallest absolute value.
The expensive bit here is the sort, so I think this runs in time O(n * log(n)).
This is C++ implementation of Saksow's algorithm.
int solution(vector<int> &A) {
vector<int> P;
int min = 20000 ;
int dif = 0 ;
P.resize(A.size()+1);
P[0] = 0;
for(int i = 1 ; i < P.size(); i ++)
{
P[i] = P[i-1]+A[i-1];
}
sort(P.begin(),P.end());
for(int i = 1 ; i < P.size(); i++)
{
dif = P[i]-P[i-1];
if(dif<min)
{
min = dif;
}
}
return min;
}
I was doing this test on Codility and I found mcdowella answer quite helpful, but not enough I have to say: so here is a 2015 answer guys!
We need to build the prefix sums of array A (called P here) like: P[0] = 0, P[1] = P[0] + A[0], P[2] = P[1] + A[1], ..., P[N] = P[N-1] + A[N-1]
The "min abs sum" of A will be the minimum absolute difference between 2 elements in P. So we just have to .sort() P and loop through it taking every time 2 successive elements. This way we have O(N + Nlog(N) + N) which equals to O(Nlog(N)).
That's it!
The answer is yes, Kadane's algorithm is definitely the way to go for solving your problem.
http://en.wikipedia.org/wiki/Maximum_subarray_problem
Source - I've closely worked with a PhD student who's entire PhD thesis was devoted to the maximum subarray problem.
def min_abs_subarray(a):
s = [a[0]]
for e in a[1:]:
s.append(s[-1] + e)
s = sorted(s)
min = abs(s[0])
t = s[0]
for x in s[1:]:
cur = abs(x)
min = cur if cur < min else min
cur = abs(t-x)
min = cur if cur < min else min
t = x
return min
You can run Kadane's algorithmtwice(or do it in one go) to find minimum and maximum sum where finding minimum works in same way as maximum with reversed signs and then calculate new maximum by comparing their absolute value.
Source-Someone's(dont remember who) comment in this site.
Here is an Iterative solution in python. It's 100% correct.
def solution(A):
memo = []
if not len(A):
return 0
for ind, val in enumerate(A):
if ind == 0:
memo.append([val, -1*val])
else:
newElem = []
for i in memo[ind - 1]:
newElem.append(i+val)
newElem.append(i-val)
memo.append(newElem)
return min(abs(n) for n in memo.pop())
Short Sweet and work like a charm. JavaScript / NodeJs solution
function solution(A, i=0, sum =0 ) {
//Edge case if Array is empty
if(A.length == 0) return 0;
// Base case. For last Array element , add and substart from sum
// and find min of their absolute value
if(A.length -1 === i){
return Math.min( Math.abs(sum + A[i]), Math.abs(sum - A[i])) ;
}
// Absolute value by adding the elem with the sum.
// And recusrively move to next elem
let plus = Math.abs(solution(A, i+1, sum+A[i]));
// Absolute value by substracting the elem from the sum
let minus = Math.abs(solution(A, i+1, sum-A[i]));
return Math.min(plus, minus);
}
console.log(solution([-100, 3, 2, 4]))
Here is a C solution based on Kadane's algorithm.
Hopefully its helpful.
#include <stdio.h>
int min(int a, int b)
{
return (a >= b)? b: a;
}
int min_slice(int A[], int N) {
if (N==0 || N>1000000)
return 0;
int minTillHere = A[0];
int minSoFar = A[0];
int i;
for(i = 1; i < N; i++){
minTillHere = min(A[i], minTillHere + A[i]);
minSoFar = min(minSoFar, minTillHere);
}
return minSoFar;
}
int main(){
int A[]={3, 2, -6, 4, 0}, N = 5;
//int A[]={3, 2, 6, 4, 0}, N = 5;
//int A[]={-4, -8, -3, -2, -4, -10}, N = 6;
printf("Minimum slice = %d \n", min_slice(A,N));
return 0;
}
public static int solution(int[] A) {
int minTillHere = A[0];
int absMinTillHere = A[0];
int minSoFar = A[0];
int i;
for(i = 1; i < A.length; i++){
absMinTillHere = Math.min(Math.abs(A[i]),Math.abs(minTillHere + A[i]));
minTillHere = Math.min(A[i], minTillHere + A[i]);
minSoFar = Math.min(Math.abs(minSoFar), absMinTillHere);
}
return minSoFar;
}
int main()
{
int n; cin >> n;
vector<int>a(n);
for(int i = 0; i < n; i++) cin >> a[i];
long long local_min = 0, global_min = LLONG_MAX;
for(int i = 0; i < n; i++)
{
if(abs(local_min + a[i]) > abs(a[i]))
{
local_min = a[i];
}
else local_min += a[i];
global_min = min(global_min, abs(local_min));
}
cout << global_min << endl;
}

Discover long patterns

Given a sorted list of numbers, I would like to find the longest subsequence where the differences between successive elements are geometrically increasing. So if the list is
1, 2, 3, 4, 7, 15, 27, 30, 31, 81
then the subsequence is 1, 3, 7, 15, 31. Alternatively consider 1, 2, 5, 6, 11, 15, 23, 41, 47 which has subsequence 5, 11, 23, 47 with a = 3 and k = 2.
Can this be solved in O(n2) time? Where n is the length of the list.
I am interested both in the general case where the progression of differences is ak, ak2, ak3, etc., where both a and k are integers, and in the special case where a = 1, so the progression of difference is k, k2, k3, etc.
Update
I have made an improvement of the algorithm that it takes an average of O(M + N^2) and memory needs of O(M+N). Mainly is the same that the protocol described below, but to calculate the possible factors A,K for ech diference D, I preload a table. This table takes less than a second to be constructed for M=10^7.
I have made a C implementation that takes less than 10minutes to solve N=10^5 diferent random integer elements.
Here is the source code in C: To execute just do: gcc -O3 -o findgeo findgeo.c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <memory.h>
#include <time.h>
struct Factor {
int a;
int k;
struct Factor *next;
};
struct Factor *factors = 0;
int factorsL=0;
void ConstructFactors(int R) {
int a,k,C;
int R2;
struct Factor *f;
float seconds;
clock_t end;
clock_t start = clock();
if (factors) free(factors);
factors = malloc (sizeof(struct Factor) *((R>>1) + 1));
R2 = R>>1 ;
for (a=0;a<=R2;a++) {
factors[a].a= a;
factors[a].k=1;
factors[a].next=NULL;
}
factorsL=R2+1;
R2 = floor(sqrt(R));
for (k=2; k<=R2; k++) {
a=1;
C=a*k*(k+1);
while (C<R) {
C >>= 1;
f=malloc(sizeof(struct Factor));
*f=factors[C];
factors[C].a=a;
factors[C].k=k;
factors[C].next=f;
a++;
C=a*k*(k+1);
}
}
end = clock();
seconds = (float)(end - start) / CLOCKS_PER_SEC;
printf("Construct Table: %f\n",seconds);
}
void DestructFactors() {
int i;
struct Factor *f;
for (i=0;i<factorsL;i++) {
while (factors[i].next) {
f=factors[i].next->next;
free(factors[i].next);
factors[i].next=f;
}
}
free(factors);
factors=NULL;
factorsL=0;
}
int ipow(int base, int exp)
{
int result = 1;
while (exp)
{
if (exp & 1)
result *= base;
exp >>= 1;
base *= base;
}
return result;
}
void findGeo(int **bestSolution, int *bestSolutionL,int *Arr, int L) {
int i,j,D;
int mustExistToBeBetter;
int R=Arr[L-1]-Arr[0];
int *possibleSolution;
int possibleSolutionL=0;
int exp;
int NextVal;
int idx;
int kMax,aMax;
float seconds;
clock_t end;
clock_t start = clock();
kMax = floor(sqrt(R));
aMax = floor(R/2);
ConstructFactors(R);
*bestSolutionL=2;
*bestSolution=malloc(0);
possibleSolution = malloc(sizeof(int)*(R+1));
struct Factor *f;
int *H=malloc(sizeof(int)*(R+1));
memset(H,0, sizeof(int)*(R+1));
for (i=0;i<L;i++) {
H[ Arr[i]-Arr[0] ]=1;
}
for (i=0; i<L-2;i++) {
for (j=i+2; j<L; j++) {
D=Arr[j]-Arr[i];
if (D & 1) continue;
f = factors + (D >>1);
while (f) {
idx=Arr[i] + f->a * f->k - Arr[0];
if ((f->k <= kMax)&& (f->a<aMax)&&(idx<=R)&&H[idx]) {
if (f->k ==1) {
mustExistToBeBetter = Arr[i] + f->a * (*bestSolutionL);
} else {
mustExistToBeBetter = Arr[i] + f->a * f->k * (ipow(f->k,*bestSolutionL) - 1)/(f->k-1);
}
if (mustExistToBeBetter< Arr[L-1]+1) {
idx= floor(mustExistToBeBetter - Arr[0]);
} else {
idx = R+1;
}
if ((idx<=R)&&H[idx]) {
possibleSolution[0]=Arr[i];
possibleSolution[1]=Arr[i] + f->a*f->k;
possibleSolution[2]=Arr[j];
possibleSolutionL=3;
exp = f->k * f->k * f->k;
NextVal = Arr[j] + f->a * exp;
idx=NextVal - Arr[0];
while ( (idx<=R) && H[idx]) {
possibleSolution[possibleSolutionL]=NextVal;
possibleSolutionL++;
exp = exp * f->k;
NextVal = NextVal + f->a * exp;
idx=NextVal - Arr[0];
}
if (possibleSolutionL > *bestSolutionL) {
free(*bestSolution);
*bestSolution = possibleSolution;
possibleSolution = malloc(sizeof(int)*(R+1));
*bestSolutionL=possibleSolutionL;
kMax= floor( pow (R, 1/ (*bestSolutionL) ));
aMax= floor(R / (*bestSolutionL));
}
}
}
f=f->next;
}
}
}
if (*bestSolutionL == 2) {
free(*bestSolution);
possibleSolutionL=0;
for (i=0; (i<2)&&(i<L); i++ ) {
possibleSolution[possibleSolutionL]=Arr[i];
possibleSolutionL++;
}
*bestSolution = possibleSolution;
*bestSolutionL=possibleSolutionL;
} else {
free(possibleSolution);
}
DestructFactors();
free(H);
end = clock();
seconds = (float)(end - start) / CLOCKS_PER_SEC;
printf("findGeo: %f\n",seconds);
}
int compareInt (const void * a, const void * b)
{
return *(int *)a - *(int *)b;
}
int main(void) {
int N=100000;
int R=10000000;
int *A = malloc(sizeof(int)*N);
int *Sol;
int SolL;
int i;
int *S=malloc(sizeof(int)*R);
for (i=0;i<R;i++) S[i]=i+1;
for (i=0;i<N;i++) {
int r = rand() % (R-i);
A[i]=S[r];
S[r]=S[R-i-1];
}
free(S);
qsort(A,N,sizeof(int),compareInt);
/*
int step = floor(R/N);
A[0]=1;
for (i=1;i<N;i++) {
A[i]=A[i-1]+step;
}
*/
findGeo(&Sol,&SolL,A,N);
printf("[");
for (i=0;i<SolL;i++) {
if (i>0) printf(",");
printf("%d",Sol[i]);
}
printf("]\n");
printf("Size: %d\n",SolL);
free(Sol);
free(A);
return EXIT_SUCCESS;
}
Demostration
I will try to demonstrate that the algorithm that I proposed is in average for an equally distributed random sequence. I’m not a mathematician and I am not used to do this kind of demonstrations, so please fill free to correct me any error that you can see.
There are 4 indented loops, the two firsts are the N^2 factor. The M is for the calculation of the possible factors table).
The third loop is executed only once in average for each pair. You can see this checking the size of the pre-calculated factors table. It’s size is M when N->inf. So the average steps for each pair is M/M=1.
So the proof happens to check that the forth loop. (The one that traverses the good made sequences is executed less that or equal O(N^2) for all the pairs.
To demonstrate that, I will consider two cases: one where M>>N and other where M ~= N. Where M is the maximum difference of the initial array: M= S(n)-S(1).
For the first case, (M>>N) the probability to find a coincidence is p=N/M. To start a sequence, it must coincide the second and the b+1 element where b is the length of the best sequence until now. So the loop will enter times. And the average length of this series (supposing an infinite series) is . So the total number of times that the loop will be executed is . And this is close to 0 when M>>N. The problem here is when M~=N.
Now lets consider this case where M~=N. Lets consider that b is the best sequence length until now. For the case A=k=1, then the sequence must start before N-b, so the number of sequences will be N-b, and the times that will go for the loop will be a maximum of (N-b)*b.
For A>1 and k=1 we can extrapolate to where d is M/N (the average distance between numbers). If we add for all A’s from 1 to dN/b then we see a top limit of:
For the cases where k>=2, we see that the sequence must start before , So the loop will enter an average of and adding for all As from 1 to dN/k^b, it gives a limit of
Here, the worst case is when b is minimum. Because we are considering minimum series, lets consider a very worst case of b= 2 so the number of passes for the 4th loop for a given k will be less than
.
And if we add all k’s from 2 to infinite will be:
So adding all the passes for k=1 and k>=2, we have a maximum of:
Note that d=M/N=1/p.
So we have two limits, One that goes to infinite when d=1/p=M/N goes to 1 and other that goes to infinite when d goes to infinite. So our limit is the minimum of both, and the worst case is when both equetions cross. So if we solve the equation:
we see that the maximum is when d=1.353
So it is demonstrated that the forth loops will be processed less than 1.55N^2 times in total.
Of course, this is for the average case. For the worst case I am not able to find a way to generate series whose forth loop are higher than O(N^2), and I strongly believe that they does not exist, but I am not a mathematician to prove it.
Old Answer
Here is a solution in average of O((n^2)*cube_root(M)) where M is the difference between the first and last element of the array. And memory requirements of O(M+N).
1.- Construct an array H of length M so that M[i - S[0]]=true if i exists in the initial array and false if it does not exist.
2.- For each pair in the array S[j], S[i] do:
2.1 Check if it can be the first and third elements of a possible solution. To do so, calculate all possible A,K pairs that meet the equation S(i) = S(j) + AK + AK^2. Check this SO question to see how to solve this problem. And check that exist the second element: S[i]+ A*K
2.2 Check also that exist the element one position further that the best solution that we have. For example, if the best solution that we have until now is 4 elements long then check that exist the element A[j] + AK + AK^2 + AK^3 + AK^4
2.3 If 2.1 and 2.2 are true, then iterate how long is this series and set as the bestSolution until now is is longer that the last.
Here is the code in javascript:
function getAKs(A) {
if (A / 2 != Math.floor(A / 2)) return [];
var solution = [];
var i;
var SR3 = Math.pow(A, 1 / 3);
for (i = 1; i <= SR3; i++) {
var B, C;
C = i;
B = A / (C * (C + 1));
if (B == Math.floor(B)) {
solution.push([B, C]);
}
B = i;
C = (-1 + Math.sqrt(1 + 4 * A / B)) / 2;
if (C == Math.floor(C)) {
solution.push([B, C]);
}
}
return solution;
}
function getBestGeometricSequence(S) {
var i, j, k;
var bestSolution = [];
var H = Array(S[S.length-1]-S[0]);
for (i = 0; i < S.length; i++) H[S[i] - S[0]] = true;
for (i = 0; i < S.length; i++) {
for (j = 0; j < i; j++) {
var PossibleAKs = getAKs(S[i] - S[j]);
for (k = 0; k < PossibleAKs.length; k++) {
var A = PossibleAKs[k][0];
var K = PossibleAKs[k][17];
var mustExistToBeBetter;
if (K==1) {
mustExistToBeBetter = S[j] + A * bestSolution.length;
} else {
mustExistToBeBetter = S[j] + A * K * (Math.pow(K,bestSolution.length) - 1)/(K-1);
}
if ((H[S[j] + A * K - S[0]]) && (H[mustExistToBeBetter - S[0]])) {
var possibleSolution=[S[j],S[j] + A * K,S[i]];
exp = K * K * K;
var NextVal = S[i] + A * exp;
while (H[NextVal - S[0]] === true) {
possibleSolution.push(NextVal);
exp = exp * K;
NextVal = NextVal + A * exp;
}
if (possibleSolution.length > bestSolution.length) {
bestSolution = possibleSolution;
}
}
}
}
}
return bestSolution;
}
//var A= [ 1, 2, 3,5,7, 15, 27, 30,31, 81];
var A=[];
for (i=1;i<=3000;i++) {
A.push(i);
}
var sol=getBestGeometricSequence(A);
$("#result").html(JSON.stringify(sol));
You can check the code here: http://jsfiddle.net/6yHyR/1/
I maintain the other solution because I believe that it is still better when M is very big compared to N.
Just to start with something, here is a simple solution in JavaScript:
var input = [0.7, 1, 2, 3, 4, 7, 15, 27, 30, 31, 81],
output = [], indexes, values, i, index, value, i_max_length,
i1, i2, i3, j1, j2, j3, difference12a, difference23a, difference12b, difference23b,
scale_factor, common_ratio_a, common_ratio_b, common_ratio_c,
error, EPSILON = 1e-9, common_ratio_is_integer,
resultDiv = $("#result");
for (i1 = 0; i1 < input.length - 2; ++i1) {
for (i2 = i1 + 1; i2 < input.length - 1; ++i2) {
scale_factor = difference12a = input[i2] - input[i1];
for (i3 = i2 + 1; i3 < input.length; ++i3) {
difference23a = input[i3] - input[i2];
common_ratio_1a = difference23a / difference12a;
common_ratio_2a = Math.round(common_ratio_1a);
error = Math.abs((common_ratio_2a - common_ratio_1a) / common_ratio_1a);
common_ratio_is_integer = error < EPSILON;
if (common_ratio_2a > 1 && common_ratio_is_integer) {
indexes = [i1, i2, i3];
j1 = i2;
j2 = i3
difference12b = difference23a;
for (j3 = j2 + 1; j3 < input.length; ++j3) {
difference23b = input[j3] - input[j2];
common_ratio_1b = difference23b / difference12b;
common_ratio_2b = Math.round(common_ratio_1b);
error = Math.abs((common_ratio_2b - common_ratio_1b) / common_ratio_1b);
common_ratio_is_integer = error < EPSILON;
if (common_ratio_is_integer && common_ratio_2a === common_ratio_2b) {
indexes.push(j3);
j1 = j2;
j2 = j3
difference12b = difference23b;
}
}
values = [];
for (i = 0; i < indexes.length; ++i) {
index = indexes[i];
value = input[index];
values.push(value);
}
output.push(values);
}
}
}
}
if (output !== []) {
i_max_length = 0;
for (i = 1; i < output.length; ++i) {
if (output[i_max_length].length < output[i].length)
i_max_length = i;
}
for (i = 0; i < output.length; ++i) {
if (output[i_max_length].length == output[i].length)
resultDiv.append("<p>[" + output[i] + "]</p>");
}
}
Output:
[1, 3, 7, 15, 31]
I find the first three items of every subsequence candidate, calculate the scale factor and the common ratio from them, and if the common ratio is integer, then I iterate over the remaining elements after the third one, and add those to the subsequence, which fit into the geometric progression defined by the first three items. As a last step, I select the sebsequence/s which has/have the largest length.
In fact it is exactly the same question as Longest equally-spaced subsequence, you just have to consider the logarithm of your data. If the sequence is a, ak, ak^2, ak^3, the logarithmique value is ln(a), ln(a) + ln(k), ln(a)+2ln(k), ln(a)+3ln(k), so it is equally spaced. The opposite is of course true. There is a lot of different code in the question above.
I don't think the special case a=1 can be resolved more efficiently than an adaptation from an algorithm above.
Here is my solution in Javascript. It should be close to O(n^2) except may be in some pathological cases.
function bsearch(Arr,Val, left,right) {
if (left == right) return left;
var m=Math.floor((left + right) /2);
if (Val <= Arr[m]) {
return bsearch(Arr,Val,left,m);
} else {
return bsearch(Arr,Val,m+1,right);
}
}
function findLongestGeometricSequence(S) {
var bestSolution=[];
var i,j,k;
var H={};
for (i=0;i<S.length;i++) H[S[i]]=true;
for (i=0;i<S.length;i++) {
for (j=0;j<i;j++) {
for (k=j+1;k<i;) {
var possibleSolution=[S[j],S[k],S[i]];
var K = (S[i] - S[k]) / (S[k] - S[j]);
var A = (S[k] - S[j]) * (S[k] - S[j]) / (S[i] - S[k]);
if ((Math.floor(K) == K) && (Math.floor(A)==A)) {
exp= K*K*K;
var NextVal= S[i] + A * exp;
while (H[NextVal] === true) {
possibleSolution.push(NextVal);
exp = exp * K;
NextVal= NextVal + A * exp;
}
if (possibleSolution.length > bestSolution.length)
bestSolution=possibleSolution;
K--;
} else {
K=Math.floor(K);
}
if (K>0) {
var NextPossibleMidValue= (S[i] + K*S[j]) / (K +1);
k++;
if (S[k]<NextPossibleMidValue) {
k=bsearch(S,NextPossibleMidValue, k+1, i);
}
} else {
k=i;
}
}
}
}
return bestSolution;
}
function Run() {
var MyS= [0.7, 1, 2, 3, 4, 5,6,7, 15, 27, 30,31, 81];
var sol = findLongestGeometricSequence(MyS);
alert(JSON.stringify(sol));
}
Small Explanation
If we take 3 numbers of the array S(j) < S(k) < S(i) then you can calculate a and k so that: S(k) = S(j) + a*k and S(i) = S(k) + a*k^2 (2 equations and 2 incognits). With that in mind, you can check if exist a number in the array that is S(next) = S(i) + a*k^3. If that is the case, then continue checknng for S(next2) = S(next) + a*k^4 and so on.
This would be a O(n^3) solution, but you can hava advantage that k must be integer in order to limit the S(k) points selected.
In case that a is known, then you can calculate a(k) and you need to check only one number in the third loop, so this case will be clearly a O(n^2).
I think this task is related with not so long ago posted Longest equally-spaced subsequence. I've just modified my algorithm in Python a little bit:
from math import sqrt
def add_precalc(precalc, end, (a, k), count, res, N):
if end + a * k ** res[1]["count"] > N: return
x = end + a * k ** count
if x > N or x < 0: return
if precalc[x] is None: return
if (a, k) not in precalc[x]:
precalc[x][(a, k)] = count
return
def factors(n):
res = []
for x in range(1, int(sqrt(n)) + 1):
if n % x == 0:
y = n / x
res.append((x, y))
res.append((y, x))
return res
def work(input):
precalc = [None] * (max(input) + 1)
for x in input: precalc[x] = {}
N = max(input)
res = ((0, 0), {"end":0, "count":0})
for i, x in enumerate(input):
for y in input[i::-1]:
for a, k in factors(x - y):
if (a, k) in precalc[x]: continue
add_precalc(precalc, x, (a, k), 2, res, N)
for step, count in precalc[x].iteritems():
count += 1
if count > res[1]["count"]: res = (step, {"end":x, "count":count})
add_precalc(precalc, x, step, count, res, N)
precalc[x] = None
d = [res[1]["end"]]
for x in range(res[1]["count"] - 1, 0, -1):
d.append(d[-1] - res[0][0] * res[0][1] ** x)
d.reverse()
return d
explanation
Traversing the array
For each previous element of the array calculate factors of the difference between current and taken previous element and then precalculate next possible element of the sequence and saving it to precalc array
So when arriving at element i there're already all possible sequences with element i in the precalc array, so we have to calculate next possible element and save it to precalc.
Currently there's one place in algorithm that could be slow - factorization of each previous number. I think it could be made faster with two optimizations:
more effective factorization algorithm
find a way not to see at each element of array, using the fact that array is sorted and there's already a precalculated sequences
Python:
def subseq(a):
seq = []
aset = set(a)
for i, x in enumerate(a):
# elements after x
for j, x2 in enumerate(a[i+1:]):
j += i + 1 # enumerate starts j at 0, we want a[j] = x2
bk = x2 - x # b*k (assuming k and k's exponent start at 1)
# given b*k, bruteforce values of k
for k in range(1, bk + 1):
items = [x, x2] # our subsequence so far
nextdist = bk * k # what x3 - x2 should look like
while items[-1] + nextdist in aset:
items.append(items[-1] + nextdist)
nextdist *= k
if len(items) > len(seq):
seq = items
return seq
Running time is O(dn^3), where d is the (average?) distance between two elements,
and n is of course len(a).

maximum subarray of an array with integers [duplicate]

This question already has answers here:
Maximum sum sublist?
(13 answers)
Closed 8 years ago.
In an interview one of my friends was asked to find the subarray of an array with maximum sum, this my solution to the problem , how can I improve the solution make it more optimal , should i rather consider doing in a recursive fashion ?
def get_max_sum_subset(x):
max_subset_sum = 0
max_subset_i = 0
max_subset_j = 0
for i in range(0,len(x)+1):
for j in range(i+1,len(x)+1):
current_sum = sum(x[i:j])
if current_sum > max_subset_sum:
max_subset_sum = current_sum
max_subset_i = i
max_subset_j = j
return max_subset_sum,max_subset_i,max_subset_j
Your solution is O(n^2). The optimal solution is linear. It works so that you scan the array from left to right, taking note of the best sum and the current sum:
def get_max_sum_subset(x):
bestSoFar = 0
bestNow = 0
bestStartIndexSoFar = -1
bestStopIndexSoFar = -1
bestStartIndexNow = -1
for i in xrange(len(x)):
value = bestNow + x[i]
if value > 0:
if bestNow == 0:
bestStartIndexNow = i
bestNow = value
else:
bestNow = 0
if bestNow > bestSoFar:
bestSoFar = bestNow
bestStopIndexSoFar = i
bestStartIndexSoFar = bestStartIndexNow
return bestSoFar, bestStartIndexSoFar, bestStopIndexSoFar
This problem was also discussed thourougly in Programming Pearls: Algorithm Design Techniques (highly recommended). There you can also find a recursive solution, which is not optimal (O(n log n)), but better than O(n^2).
This is a well-known problem that displays overlapping optimal substructure, which suggests a dynamic programming (DP) solution. Although DP solutions are usually quite tricky (I think so at least!), this one is a great example to get introduced to the whole concept.
The first thing to note is that the maximal subarray (which must be a contiguous portion of the given array A) ending at position j either consists of the maximimal subarray ending at position j-1 plus A[j], or is empty (this only occurs if A[j] < 0). In other words, we are asking whether the element A[j] is contributing positively to the current maximum sum ending at position j-1. If yes, include it in the maximal subarray so far; if not, don't. Thus, from solving smaller subproblems that overlap we can build up an optimal solution.
The sum of the maximal subarray ending at position j can then be given recursively by the following relation:
sum[0] = max(0, A[0])
sum[j] = max(0, sum[j-1] + A[j])
We can build up these answers in a bottom-up fashion by scanning A from left to right. We update sum[j] as we consider A[j]. We can keep track of the overall maximum value and the location of the maximal subarray through this process as well. Here is a quick solution I wrote up in Ruby:
def max_subarray(a)
sum = [0]
max, head, tail = sum[0], -1, -1
cur_head = 0
(0...a.size).each do |j|
# base case included below since sum[-1] = sum[0]
sum[j] = [0, sum[j-1] + a[j]].max
cur_head = j if sum[j-1] == 0
if sum[j] > max
max, head, tail = sum[j], cur_head, j
end
end
return max, head, tail
end
Take a look at my gist if you'd like to test this for yourself.
This is clearly a linear O(N) algorithm since only one pass through the list is required. Hope this helps!
let n - elements count, a(i) - your array f(i) - maximum sum of subarray that ends at position i (minimum length is 1). Then:
f(0) = a(i);
f(i) = max(f(i-1), 0) + a(i); //f(i-1) when we continue subarray, or 0 - when start at i position
max(0, f(1), f(2), ... , f(n-1)) - the answer
A much better solution approach can be derived by thinking about what conditions must hold for a maximum-sum sub-array: the first item on either end that is not included (if any) must be negative and the last item on either end that is included must be non-negative. You don't need to consider any other end points for the sub-array except where these changes occur in the original data.
There is a short video from MIT that helps you understand this dynamic programming problem.
http://people.csail.mit.edu/bdean/6.046/dp/
Click on the first link under the 'problems' section and you will see it.
Here is a simple O(N) algorithm from http://en.wikipedia.org/wiki/Maximum_subarray_problem
int maxsofar=0;
int maxendinghere=0;
for i=[0 n] {
maxendinghere=max(maxendinghere+x[i],0);
maxsofar=max(maxsofar,maxendinghere);
}
Unless I'm missing something important, if they are positive integers the subset would include the whole array, if they're integers, it would include only positive integers. Is there another constraint there?
Java solution:
Does not work for an array with all negatives.
public static int[] maxsubarray(int[] array) {
//empty array check
if (array.length == 0){
return new int[]{};
}
int max = 0;
int maxsofar = 0;
//indices
int maxsofarstart = 0;
int maxsofarend = 0;
int maxstartindex = 0;
for (int i = 0; i < array.length; i++) {
if (array[i] > 0) {
if (max == 0) {
maxstartindex = i;
}
max = max + array[i];
if (max > maxsofar) {
maxsofar = max;
maxsofarstart = maxstartindex;
maxsofarend = i;
}
} else {
max = 0;
}
}
return Arrays.copyOfRange(array, maxsofarstart, maxsofarend + 1);
}
here is one of most well-expained, tested, working solution - http://rerun.me/blog/2012/08/30/maximum-continuous-subarray-problem-kandanes-algorithm/
package me.rerun;
public class Kadane {
public static void main(String[] args) {
int[] intArr={3, -1, -1, -1, -1, -1, 2, 0, 0, 0 };
//int[] intArr = {-1, 3, -5, 4, 6, -1, 2, -7, 13, -3};
//int[] intArr={-6,-2,-3,-4,-1,-5,-5};
findMaxSubArray(intArr);
}
public static void findMaxSubArray(int[] inputArray){
int maxStartIndex=0;
int maxEndIndex=0;
int maxSum = Integer.MIN_VALUE;
int cumulativeSum= 0;
int maxStartIndexUntilNow=0;
for (int currentIndex = 0; currentIndex < inputArray.length; currentIndex++) {
int eachArrayItem = inputArray[currentIndex];
cumulativeSum+=eachArrayItem;
if(cumulativeSum>maxSum){
maxSum = cumulativeSum;
maxStartIndex=maxStartIndexUntilNow;
maxEndIndex = currentIndex;
}
else if (cumulativeSum<0){
maxStartIndexUntilNow=currentIndex+1;
cumulativeSum=0;
}
}
System.out.println("Max sum : "+maxSum);
System.out.println("Max start index : "+maxStartIndex);
System.out.println("Max end index : "+maxEndIndex);
}
}
This is the correct Java Code which will handle scenarios including all negative numbers.
public static long[] leftToISumMaximize(int N, long[] D) {
long[] result = new long[N];
result[0] = D[0];
long currMax = D[0];
for (int i = 1; i < N; i++) {
currMax = Math.max(D[i], currMax + D[i]);
result[i] = Math.max(result[i - 1], currMax);
}
return result;
}
Not sure but Accepted Solution didn't for work me for all the scenarios (May be I misunderstood it)
So I did small modification, instead of
if(value > 0)
I changed it yo
if(value > bestNow)
.....(I wrote it in Scala)
And it is working for the all scenarios
def findMaxSubArray(list: List[Int]): (Int, Int, Int) = {
var (bestNow,bestSoFar) = (0, 0)
var ( startIndexNow, startIndexSoFar, endIndex) = (-1, -1, -1)
for (i <- 0 until list.length) {
var value = bestNow + list(i)
if (value > bestNow) {
if (bestNow == 0)
startIndexNow = i
bestNow = value
} else
bestNow = 0
if (bestNow > bestSoFar) {
bestSoFar = bestNow
startIndexSoFar = startIndexNow
endIndex = i
}
}
return (bestSoFar, startIndexSoFar, endIndex)
}
def main(args: Array[String]) {
println(findMaxSubArray(List(3, -1, 5, 3, -6, -9, 6, 1)).toString)
println(findMaxSubArray(List(3, -1, 5, 3, -6, -9, 6, 3)).toString)
println(findMaxSubArray(List(20, -1, 5, 3, -6, -9, 6)).toString)
}
Output.....
(max =8, start=2, end=3)
(max=9, start=6, end=7)
(max=20, start=0, end= 0)
I have made a function for a little more general problem:
Find maximum sum subarray (meaning its bounds and sum, not only the sum)
If two subarrays have equal sums then pick the shorter one
If two equally long subarrays have equal sums then pick the one that appears first.
Function is based on Kadane's algorithm and it runs in O(n) time. Basically, this is it:
function MaxSumSubarray(a, n, start out, len out)
-- a - Array
-- n - Length of the array
-- start - On output starting position of largest subarray
-- len - On output length of largest subarray
-- Returns sum of the largest subarray
begin
start = 0
len = 1
int sum = a[0]
curStart = 0
curLen = 1
curSum = a[0]
for i = 2 to n
begin
if a[i] >= curSum + a[i] then
begin
curStart = i
curLen = 1
curSum = a[i]
end
else
begin
curLen = curLen + 1
curSum = curSum + a[i]
end
if (curSum > sum) OR
(curSum = sum AND curLen < len) OR
(curSum = sum AND curLen = len AND curStart < start) then
begin
start = curStart
len = curLen
sum = curSum
end
end
return sum
end
I've uploaded the whole solution in C#, with analysis and examples, in this article: Maximum Sum Subarray

Puzzle.. solving product of values in array X

Can you please help me solving this one?
You have an unordered array X of n integers. Find the array M containing n elements where Mi is the product of all integers in X except for Xi. You may not use division. You can use extra memory. (Hint: There are solutions faster than O(n^2).)
The basic ones - O(n^2) and one using division is easy. But I just can't get another solution that is faster than O(n^2).
Let left[i] be the product of all elements in X from 1..i. Let right[i] be the product of all elements in X from i..N. You can compute both in O(n) without division in the following way: left[i] = left[i - 1] * X[i] and right[i] = right[i + 1] * X[i];
Now we will compute M: M[i] = left[i - 1] * right[i + 1]
Note: left and right are arrays.
Hope it is clear:)
Here's a solution in Python. I did the easy way with division to compare against the hard way without. Do I get the job?
L = [2, 1, 3, 5, 4]
prod = 1
for i in L: prod *= i
easy = map(lambda x: prod/x, L)
print easy
hard = [1]*len(L)
hmm = 1
for i in range(len(L) - 1):
hmm *= L[i]
hard[i + 1] *= hmm
huh = 1
for i in range(len(L) - 1, 0, -1):
huh *= L[i]
hard[i - 1] *= huh
print hard
O(n) - http://nbl.cewit.stonybrook.edu:60128/mediawiki/index.php/TADM2E_3.28
two passes -
int main (int argc, char **argv) {
int array[] = {2, 5, 3, 4};
int fwdprod[] = {1, 1, 1, 1};
int backprod[] = {1, 1, 1, 1};
int mi[] = {1, 1, 1, 1};
int i, n = 4;
for (i=1; i<=n-1; i++) {
fwdprod[i]=fwdprod[i-1]*array[i-1];
}
for (i=n-2; i>=0; i--) {
backprod[i] = backprod[i+1]*array[i+1];
}
for (i=0;i<=n-1;i++) {
mi[i]=fwdprod[i]*backprod[i];
}
return 0;
}
Old but very cool, I've been asked this at an interview myself and seen several solutions since but this is my favorite as taken from
http://www.polygenelubricants.com/2010/04/on-all-other-products-no-division.html
static int[] products(int... nums) {
final int N = nums.length;
int[] prods = new int[N];
java.util.Arrays.fill(prods, 1);
for (int // pi----> * <----pj
i = 0, pi = 1 , j = N-1, pj = 1 ;
(i < N) & (j >= 0) ;
pi *= nums[i++] , pj *= nums[j--] )
{
prods[i] *= pi ; prods[j] *= pj ;
System.out.println("pi up to this point is " + pi + "\n");
System.out.println("pj up to this point is " + pj + "\n");
System.out.println("prods[i]:" + prods[i] + "pros[j]:" + prods[j] + "\n");
}
return prods;
}
Here's what's going on, if you write out prods[i] for all the iterations, you'll see the following being calculated
prods[0], prods[n-1]
prods[1], prods[n-2]
prods[2], prods[n-3]
prods[3], prods[n-4]
.
.
.
prods[n-3], prods[2]
prods[n-2], prods[1]
prods[n-1], prods[0]
so each prods[i] get hit twice, one from the going from head to tail and once from tail to head, and both of these iterations are accumulating the product as they
traverse towards the center so it's easy to see we'll get exactly what we need, we just need to be careful and see that it misses the element itself and that's where
it gets tricky. the key lies in the
pi *= nums[i++], pj *= nums[j--]
in the for loop conditional itself and not in the body which do not happen until the end of the
iteration. so for
prods[0],
it starts at 1*1 and then pi gets set to 120 after, so prods[0] misses the first elements
prods[1], it's 1 * 120 = 120 and then pi gets set to 120*60 after
so on and so on
O(nlogn) approach:
int multiply(int arr[], int start, int end) {
int mid;
if (start > end) {
return 1;
}
if (start == end) {
return arr[start];
}
mid = (start+end)/2;
return (multiply(arr, start, mid)*multiply(arr, mid+1, end));
}
int compute_mi(int arr[], int i, int n) {
if ((i >= n) || (i < 0)) {
return 0;
}
return (multiply(arr, 0, i-1)*multiply(arr, i+1, n-1));
}
Here is my solution in Python: Easy way but with high computational cost may be?
def product_list(x):
ans = [p for p in range(len(x))]
for i in range(0, len(x)):
a = 1
for j in range(0, len(x)):
if i != j:
a = a*x[j]
ans[i] = a
return ans

Resources