I have a grid of wells in an image and I'm trying to analyze this in Matlab. I want to create a box around each well to use as a mask. The way I am trying to go about this is to find the offset vectors from the X and Y normal and then use that to make a grid since I know the size of the wells.
I can mask out some of the wells but not all of them---but this doesn't matter since I know that there is a well in every position (see here). I can use regionprops to get the centers but I can't figure out how to move to the next step.
Here is an image with the centers I can extract
Some people have suggested that I do an FFT of the image but I can't get it to work. Any thoughts or suggestions would be greatly appreciated. Thanks in advance!
Edit: Here is the mask with the centers from the centroid feature of regionprops.
here's a quick and dirty 2 cents:
First blur and invert the image so that the well lines will have high intensity values vs the rest, and further analysis will be less sensitive to noise:
im=double(imread('im.jpg'));
im=conv2(im,fspecial('Gaussian',10,1),'same');
im2=abs(im-max(im(:)));
Then, take a local threshold using the average intensity around a neighborhood of (more or less) a well size (~200 pixels)
im3=imfilter(im2,fspecial('average',200),'replicate');
im4=im2-im3;
bw=im2bw(im4,0);
Fill holes (or wells):
[bw2,locations] = imfill(bw,'holes');
Remove objects smaller than some size:
bw3 = bwareaopen(bw2, 2000, 8);
imagesc(bw3);
You can take it from there...
Related
I have a binary image below:
it's an image of random abstract picture, and by using matlab, what I wanna do is to detect, how many peaks does it have so I'll know that there are roughly 5 objects in it.
As you can see, there are, 5 peaks in it, so it means there are 5 objects in it.
I've tried using imregionalmax(), but I don't find it usefull, since my image already in binary image. I also tried to use regionprops('Area'), but it shows wrong number since there is no exact whitespace between each object. Thanks in advance
An easy way to do this would be to simply sum across the rows for each column and find the peaks of the result using findpeaks. In the example below, I have opted to use the inverse of the image which will result in positive peaks where the columns are.
rowSum = sum(1 - image, 1);
If we plot this, it looks like the bottom plot
We can then use findpeaks to identify the peaks in this plot. We will apply a 5-point moving average to it to help eliminate false peaks.
[peaks, locations, widths, prominences] = findpeaks(smooth(rowSum));
You can then select the "true" peaks by thresholding based on any of these outputs. For this example we can use prominences and find the more prominent peaks.
isPeak = prominences > 50;
nPeaks = sum(isPeak)
5
Then we can plot the peaks locations to confirm
plot(locations(isPeak), peaks(isPeak), 'r*');
If you have some prior knowledge about the expected widths of the peaks, you could adjust the smooth span to match this expected width and obtain some cleaner peaks when using findpeaks.
Using an expected width of 40 for your image, findpeaks was able to perfectly detect all 5 peaks with no false positive.
findpeaks(smooth(rowSum, 40));
As your they are peaks, they are vertical structures. So in this particular case, you case use projection histograms (also know as histogram projection function): you make all the black pixels fall as if they were effected by gravity. Then you will find a curve of black pixels on the bottom of your image. Then you can count the number of peaks.
Here is the algorithm:
Invert the image (black is normally the absence of information)
Histogram projection
Closing and opening in order to clean the signal and get the final result.
You can add a maxima detection to get the top of the peaks.
I have an image (logical values), like this
I need to get this image resampled from pixel to mm or cm; this is the code I use to get the resampling:
function [ Ires ] = imresample3( I, pixDim )
[r,c]=size(I);
x=1:1:c;
y=1:1:r;
[X,Y]=meshgrid(x,y);
rn=r*pixDim;
cn=c*pixDim;
xNew=1:pixDim:cn;
yNew=1:pixDim:rn;
[Xnew,Ynew]=meshgrid(xNew,yNew);
Id=double(I);
Ires=interp2(X,Y,Id,Xnew,Ynew);
end
What I get is a black image. I suspect that this code does something that is not what I have in mind: it seems to take only the upper-left part of the image.
What I want is, instead, to have the same image on a mm/cm scale: what I expect is that every white pixel should be mapped from the original position to the new position (in mm/cm); what happen is certainly not what I expect.
I'm not sure that interp2 is the right command to use.
I don't want to resize the image, I just want to go from pixel world to mm/cm world.
pixDim is of course the dimension of the image pixel, obtained dividing the height of the ear in cm by the height of the ear in mm (and it is on average 0.019 cm).
Any ideas?
EDIT: I was quite sure that the code had no sense, but someone told me to do that way...anyway, if I have two edged ears, I need first to scale both the the real dimension and then perform some operations on them. What I mean with "real dimension" is that if one has size 6.5x3.5cm and the other has size 6x3.2cm, I need to perform operations on this dimensions.
I don't get how can I move from the pixel dimension to cm dimension BEFORE doing operation.
I want to move from one world to the other because I want to get rid of the capturing distance (because I suppose that if a picture of the ear is taken near and the other is taken far, they should have different size in pixel dimension).
Am I correct? There is a way to do it? I thought I can plot the ear scaling the axis, but then I suppose I cannot subtract one from the other, right?
Matlab does not use units. To apply your factor of 0.019cm/pixel you have to scale by a factor of 0.019 to have a 1cm grid, but this would cause any artefact below a size of 1cm to be lost.
Best practice is to display the data using multiple axis, one for cm and one for pixels. It's explained here: http://www.mathworks.de/de/help/matlab/creating_plots/using-multiple-x-and-y-axes.html
Any function processing the data should be independent of the scale or use the scale factor as an input argument, everything else is a sign of some serious algorithmic issues.
I have an image processing problem. I have pictures of yarn:
The individual strands are partly (but not completely) aligned. I would like to find the predominant direction in which they are aligned. In the center of the example image, this direction is around 30-34 degrees from horizontal. The result could be the average/median direction for the whole image, or just the average in each local neighborhood (producing a vector map of local directions).
What I've tried: I rotated the image in small steps (1 degree) and calculated statistics in the vertical vs horizontal direction of the rotated image (for example: standard deviation of summed rows or summed columns). I reasoned that when the strands are oriented exactly vertically or exactly horizontally the difference in statistics would be greatest, and so that angle of rotation is the correct direction in the original image. However, for at least several kinds of statistical properties I tried, this did not work.
I further thought that perhaps this wasn't working because there were too many different directions at the same time in the whole image, so I tired it in a small neighborhood. In this case, there is always a very clear preferred direction (different for each neighborhood), but it is not the direction that the fibers really go... I can post my sample code but it is basically useless.
I keep thinking there has to be some kind of simple linear algebra/statistical property of the whole image, or some value derived from the 2D FFT that would give the correct direction in one step... but how?
What probably won't work: detecting individual fibers. They are not necessarily the same color, and the image can shade from light to dark so edge detectors don't work well, and the image may not even be in focus sometimes. Because of that, it is not always even possible to see individual fibers for a human (see top-right in the example), they kinda have to be detected as preferred direction in a statistical sense.
You might try doing this in the frequency domain. The output of a Fourier Transform is orientation dependent so, if you have some kind of oriented pattern, you can apply a 2D FFT and you will see a clustering around a specific orientation.
For example, making a greyscale out of your image and performing FFT (with ImageJ) gives this:
You can see a distinct cluster that is oriented orthogonally with respect to the orientation of your yarn. With some pre-processing on your source image, to remove noise and maybe enhance the oriented features, you can probably achieve a much stronger signal in the FFT. Once you have a cluster, you can use something like PCA to determine the vector for the major axis.
For info, this is a technique that is often used to enhance oriented features, such as fingerprints, by applying a selective filter in the FFT and then taking the inverse to obtain a clearer image.
An alternative approach is to try a series of Gabor filters see here pre-built with a selection of orientations and frequencies and use the resulting features as a metric for identifying the most likely orientation. There is a scikit article that gives some examples here.
UPDATE
Just playing with ImageJ to give an idea of some possible approaches to this - I started with the FFT shown above, then - in the following image, I performed these operations (clockwise from top left) - Threshold => Close => Holefill => Erode x 3:
Finally, rather than using PCA, I calculated the spatial moments of the lower left blob using this ImageJ Plugin which handily calculates the orientation of the longest axis based on the 2nd order moment. The result gives an orientation of approximately -38 degrees (with respect to the X axis):
Depending on your frame of reference you can calculate the approximate average orientation of your yarn from this rather than from PCA.
I tried to use Gabor filters to enhance the orientations of your yarns. The parameters I used are:
phi = x*pi/16; % x = 1, 3, 5, 7
theta = 3;
sigma = 0.65*theta;
filterSize = 3;
And the imag part of the convoluted image are shown below:
As you mentioned, the most orientations lies between 30-34 degrees, thus the filter with phi = 5*pi/16 in left bottom yields the best contrast among the four.
I would consider using a Hough Transform for this type of problem, there is a nice write-up here.
i need to clean this picture delete the writing "clean me" and make it bright.
as a part of my homework in image processing course i may use matlab functions ginput, to find specific points in the image (of course in the script you should hard code the coordinates you need).
You may use conv2, fft2, ifft2, fftshift etc.
You may also use median, mean, max, min, sort, etc.
my basic idea was to use the white and black values from the middle of the picture and insert them into the other parts of the black and white strips. however gives a very synthetic look to the picture.
can you please give me a direction what to do ? a median filter will not give good results.
The general technique to do such thing is called Inpainting. But in order to do it, you need a mask of the regions that you want to in paint. So, let us suppose that we managed to get a good mask and inpainted the original image considering a morphological dilation of this mask:
To get that mask, we don't need anything much fancy. Start with a binarization of the difference between the original image and the result of a median filtering of it:
You can remove isolated pixels; join the pixels representing the stars of your flag by a combination of dilation in horizontal followed by another dilation with a small square; remove this just created largest component; and then perform a geodesic dilation with the result so far against the initial mask. This gives the good mask above.
Now to inpaint there are many algorithms, but one of the simplest ones I've found is described at Fast Digital Image Inpainting, which should be easy enough to implement. I didn't use it, but you could and verify which results you can obtain.
EDIT: I missed that you also wanted to brighten the image.
An easy way to brighten an image, without making the brighter areas even brighter, is by applying a gamma factor < 1. Being more specific to your image, you could first apply a relatively large lowpass filter, negate it, multiply the original image by it, and then apply the gamma factor. In this second case, the final image will likely be darker than the first one, so you multiply it by a simple scalar value. Here are the results for these two cases (left one is simply a gamma 0.6):
If you really want to brighten the image, then you can apply a bilateral filter and binarize it:
I see two options for removing "clean me". Both rely on the horizontal similarity.
1) Use a long 1D low-pass filter in the horizontal direction only.
2) Use a 1D median filter maybe 10 pixels long
For both solutions you of course have to exlude the stars-part.
When it comes to brightness you could try a histogram equalization. However that won't fix the unevenness of the brightness. Maybe a high-pass before equalization can fix that.
Regards
The simplest way to remove the text is, like KlausCPH said, to use a long 1-d median filter in the region with the stripes. In order to not corrupt the stars, you would need to keep a backup of this part and replace it after the median filter has run. To do this, you could use ginput to mark the lower right side of the star part:
% Mark lower right corner of star-region
figure();imagesc(Im);colormap(gray)
[xCorner,yCorner] = ginput(1);
close
xCorner = round(xCorner); yCorner = round(yCorner);
% Save star region
starBackup = Im(1:yCorner,1:xCorner);
% Clean up stripes
Im = medfilt2(Im,[1,50]);
% Replace star region
Im(1:yCorner,1:xCorner) = starBackup;
This produces
To fix the exposure problem (the middle part being brighter than the corners), you could fit a 2-D Gaussian model to your image and do a normalization. If you want to do this, I suggest looking into fit, although this can be a bit technical if you have not been working with model fitting before.
My found 2-D gaussian looks something like this:
Putting these two things together, gives:
I used gausswin() function to make a gaus. mask:
Pic_usa_g = abs(1 - gausswin( size(Pic_usa,2) ));
Pic_usa_g = Pic_usa_g + 0.6;
Pic_usa_g = Pic_usa_g .* 2;
Pic_usa_g = Pic_usa_g';
C = repmat(Pic_usa_g, size(Pic_usa,1),1);
and after multiply the image with the mask you get the fixed image.
i'm working in a project to recognize a bit code from an image like this, where black rectangle represents 0 bit, and white (white space, not visible) 1 bit.
Somebody have any idea to process the image in order to extract this informations? My project is written in java, but any solution is accepted.
thanks all for support.
I'm not an expert in image processing, I try to apply Edge Detection using Canny Edge Detector Implementation, free java implementation find here. I used this complete image [http://img257.imageshack.us/img257/5323/colorimg.png], reduce it (scale factor = 0.4) to have fast processing and this is the result [http://img222.imageshack.us/img222/8255/colorimgout.png]. Now, how i can decode white rectangle with 0 bit value, and no rectangle with 1?
The image have 10 line X 16 columns. I don't use python, but i can try to convert it to Java.
Many thanks to support.
This is recognising good old OMR (optical mark recognition).
The solution varies depending on the quality and consistency of the data you get, so noise is important.
Using an image processing library will clearly help.
Simple case: No skew in the image and no stretch or shrinkage
Create a horizontal and vertical profile of the image. i.e. sum up values in all columns and all rows and store in arrays. for an image of MxN (width x height) you will have M cells in horizontal profile and N cells in vertical profile.
Use a thresholding to find out which cells are white (empty) and which are black. This assumes you will get at least a couple of entries in each row or column. So black cells will define a location of interest (where you will expect the marks).
Based on this, you can define in lozenges in the form and you get coordinates of lozenges (rectangles where you have marks) and then you just add up pixel values in each lozenge and based on the number, you can define if it has mark or not.
Case 2: Skew (slant in the image)
Use fourier (FFT) to find the slant value and then transform it.
Case 3: Stretch or shrink
Pretty much the same as 1 but noise is higher and reliability less.
Aliostad has made some good comments.
This is OMR and you will find it much easier to get good consistent results with a good image processing library. www.leptonica.com is a free open source 'C' library that would be a very good place to start. It could process the skew and thresholding tasks for you. Thresholding to B/W would be a good start.
Another option would be IEvolution - http://www.hi-components.com/nievolution.asp for .NET.
To be successful you will need some type of reference / registration marks to allow for skew and stretch especially if you are using document scanning or capturing from a camera image.
I am not familiar with Java, but in Python, you can use the imaging library to open the image. Then load the height and the widths, and segment the image into a grid accordingly, by Height/Rows and Width/Cols. Then, just look for black pixels in those regions, or whatever color PIL registers that black to be. This obviously relies on the grid like nature of the data.
Edit:
Doing Edge Detection may also be Fruitful. First apply an edge detection method like something from wikipedia. I have used the one found at archive.alwaysmovefast.com/basic-edge-detection-in-python.html. Then convert any grayscale value less than 180 (if you want the boxes darker just increase this value) into black and otherwise make it completely white. Then create bounding boxes, lines where the pixels are all white. If data isn't terribly skewed, then this should work pretty well, otherwise you may need to do more work. See here for the results: http://imm.io/2BLd
Edit2:
Denis, how large is your dataset and how large are the images? If you have thousands of these images, then it is not feasible to manually remove the borders (the red background and yellow bars). I think this is important to know before proceeding. Also, I think the prewitt edge detection may prove more useful in this case, since there appears to be less noise:
The previous method of segmenting may be applied, if you do preprocess to bin in the following manner, in which case you need only count the number of black or white pixels and threshold after some training samples.