Merge walls into unifed mesh with corners normalization - algorithm

I'm working on some simple building planning editor. For 3D preview I'm using Three.js library for Dart (from GitHib). So far algorithm is pretty simple: it converts single lines to rectangles and then extrude it (based on thickness and height).
Is it possible to normalize vertex position depending on adjacent walls? Technically I store list of walls, within can query adjacent walls and can calculate Vector2 list for mesh generation for each wall. I have to apply changes to each wall separately due to extrusion.
Thanks in advance!

Maybe you could instead try to properly tessellate the 2D thickened walls, and then only extrude them (instead of extruding, tessellating and then trying to fix the joints). For simple polylines, joint tessellation can be handled like described in this article: http://www.codeproject.com/Articles/226569/Drawing-polylines-by-tessellation.

Related

what's the basic idea of creating 2d drawing of a 3d geometry in cads

I want to know the basic idea of creating 2d views of a 3d geometry in cads like autocad, solidworks, and etc..
Here, I listed some basic ideas that I had reached now.
Which method are they used ? or any method I didn't listed ?
idea A:
first, to render every single face to a plane space.
then detect the boundaries of faces.
do something magic that can recognize the 2d curves from the boundary pixels .
do something magic again to recognize which segments of curves should be hiddened.
construct a final view from lines and curves generated from above steps.
idea B:
they create projection rules for every type of surface with boundary wires, like plane, cylinder, sphere, spline. And thoes rules can be used in all projection angles.
then, implement projection rules for every face, and finally they got a view of many curves.
to iterate all curves generated from step 2, and check the visibility of the curve.
construct a final view.
idea C:
first, tessellate every faces to many triangles.
then, found boundaries from triangles for every faces.
then, we got many polylines from step 2.
to iterate all polylines generated for every faces, and check the visibility of the polylines.
construct a final view.
I found a solution, it follows this way:
tessellate every face and edge to triangles and segments.
project all those triangles and segments to a plane.
then choose a suitable resolution to construct those projected triangles and segments to pixels with a height parameter.
found contours for every face and edge from those pixels.
set visible value for every pixel on that contour depends on the height parameter of a total pixel's view.
reconstruct line, circle, and polylines from pixels.
I tested this method for some models, and works well. below is one of them:

Triangle pattern GLSL shader

Is there any simple algorithm like Voronoi diagram to divide any rectangular plane to triangles, eventually, using # of pre-defined points.
To be honest, I have to write a very simple fragment shader like this.
Theoretically, this Voronoii shader could be 'upgraded' by Delaunay triangulation
but wanna find the more elegant solution.
The first thing that comes to my mind is to create n random points (with specific seed) to fill a cylinder volume. The triangle points will be intersection of lines between those points and plane going through the axis of cylinder. The animation would be simply done by rotating the plane ...
I see it something like this:
So the neighboring points should be interconnected with each other. Forming tetrahedrons that fills the volume of the cylinder. So create uniform tetrahedron grid and add random noise to the points position (with specific seed).
This whole task is very similar to rendering cross section of 4D mesh see:
4D rendering techniques
As the 4D simplex is also tetrahedron. The only diference is you are in 3D and cutting by 3D plane.
You can reverse-engineer this example shadertoy.com/view/MdfBzl
like I did. Thanks to mattz.

WEBGL Draw pixels inside vertices position

I am new to the WebGL and shaders world, and I was wondering what the best way for me to paint only the pixels within a path. I have the positions 2d of each point and I would like to fill with a color inside the path.
2D Positions
Fill
Could someone give me a direction? Thanks!
Unlike the canvas 2d API to do this in WebGL requires you to triangulate the path. WebGL only draws points (squares), lines, and triangles. Everything else (circles, paths, 3d models) is up to you to creatively use those 3 primitives.
In your case you need turn your path into a set of triangles. There are tons of algorithms to do that. Each one has tradeoffs, some only handle convex paths, some don't handle holes, some add more points in the middle and some don't. Some are faster than others. There are also libraries that do it like this one for example
It's kind of a big topic arguably too big to go into detail here. Other SO questions about it already have answers.
Once you do have the path turned into triangles then it's pretty straightforward to pass those triangles into WebGL and have them drawn.
Plenty of answers on SO already cover that as well. Examples
Drawing parametric shapes in webGL (without three.js)
Or you might prefer some tutorials
There is a simple triangulation (mesh generation) for your case. First sort all your vertices into CCW order. Then calculate the middle point of all vertices. Then iterate over your sorted vertices, and push a triangle made of the middle point, the point at vertices[index] and the point at vertices[index+1] to the mesh.

Tiled Terrain Normals

I am trying to create a terrain solution in ThreeJS and I'm running into some trouble with the generation of the normals. I am approaching the problem by creating a number of mesh objects using the THREE.PlaneGeometry class. Once all of the tiles have been created I go through each and set the UV's so that each tile represents a part of the whole. I also generate a height value of the vertex Y positions to create some hills. I then call the geometry functions
geometry.computeFaceNormals();
geometry.computeVertexNormals();
This is just so that I have some default face and vertex normals for each tile.
I then go through each tile and try to average out the normals on each corner.
The problem is (I think) with the normals, but I don't really know what to call this problem. Each of the normals on the plane's corners point in the same direction as the face when created. This makes the terrain look like a flat shaded object. To prevent this I thought perhaps what I needed to do was make sure each vertext normal (each corner) had the same averaged normal as its immediate neighbours normals. I.E each corner of each tile has the same normal as all the immediate normals around it from the adjacent planes.
figure A
Here I am visualising each of the 4 normals on the mesh. You can see that at each corner the normals are the same (On top of eachother)
figure B
EDIT
figure C
EDIT
Figure D
Except even when the verts all share the same normals it still comes up all blocky <:/
I don't know how to do this... I think my understanding of what needs to be done is incorrect...?
Any help would be greatly appreciated.
You're basically right about what should happen. The shading you're getting is not consistent with continuous normals. If each all the vertex-faces at a given location have the same normal you should not see the clear shading discontinuities in your second image. However the image doesn't look like simple face normals either, at least not to my eye.
A couple of things to look at:
1) I note that your quads themselves are not planar. Is it possible your algorithm is assuming that they are? the non-planar quad meshes don't have real 'face normal' to use as a base.
2) Are your normalized normalized after you average them? That is, do they have a vector length of 1?
3) Are you confident that the normal averaging code is actually using the correct normals to average? The shading in this does not look like completely flat shaded image where each vertex-face normal in a quad is the same - if that were the case you'd get consistent shading across each quad although the quads would not be continuous. This it possible your original vertex-face normals are not in fact lined up with the face normals?
4) Try turning off the bump maps to debug. Depending on how the bump is being done in your shader you may have incorrect binormals/bitangents rather than bad vert normals.
Instead of averaging at each vertex / corner the neighborhood normals you should average the four normals that each vertex has (4 tiles meet at each vertex).

2D geometry outline shader

I want to create a shader to outline 2D geometry. I'm using OpenGL ES2.0. I don't want to use a convolution filter, as the outline is not dependent on the texture, and it is too slow (I tried rendering the textured geometry to another texture, and then drawing that with the convolution shader). I've also tried doing 2 passes, the first being single colorded overscaled geometry to represent an oultine, and then normal drawing on top, but this results in different thicknesses or unaligned outlines. I've looking into how silhouette's in cel-shading are done but they are all calculated using normals and lights, which I don't use at all.
I'm using Box2D for physics, and have "destructable" objects with multiple fixtures. At any point an object can be broken down (fixtures deleted), and I want to the outline to follow the new outter counter.
I'm doing the drawing with a vertex buffer that matches the vertices of the fixtures, preset texture coordinates, and indices to draw triangles. When a fixture is removed, it's associated indices in the index buffer are set to 0, so no triangles are drawn there anymore.
The following image shows what this looks like for one object when it is fully intact.
The red points are the vertex positions (texturing isn't shown), the black lines are the fixtures, and the blue lines show the seperation of how the triangles are drawn. The gray outline is what I would like the outline to look like in any case.
This image shows the same object with a few fixtures removed.
Is this possible to do this in a vertex shader (or in combination with other simple methods)? Any help would be appreciated.
Thanks :)
Assuming you're able to do something about those awkward points that are slightly inset from the corners (eg, if you numbered the points in English-reading order, with the first being '1', point 6 would be one)...
If a point is interior then if you list all the polygon edges connected to it in clockwise order, each pair of edges in sequence will have a polygon in common. If any two edges don't have a polygon in common then it's an exterior point.
Starting from any exterior point you can then get the whole outline by first walking in any direction and subsequently along any edge that connects to an exterior point you haven't visited yet (or, alternatively, that isn't the edge you walked along just now).
Starting from an existing outline and removing some parts, you can obviously start from either exterior point that used to connect to another but no longer does and just walk from there until you get to the other.
You can't handle this stuff in a shader under ES because you don't get connectivity information.
I think the best you could do in a shader is to expand the geometry by pushing vertices outward along their surface normals. Supposing that your data structure is a list of rectangles, each described by, say, a centre, a width and a height, you could achieve the same thing by drawing each with the same centre but with a small amount added to the width and height.
To be completely general you'd need to store normals at vertices, but also to update them as geometry is removed. So there'd be some pushing of new information from the CPU but it'd be relatively limited.

Resources