Auto-detect GPU - winapi

I need detect GPU (videocard) and set settings of the app, appropriate to GPU performance.
I'm able to make a list with settings for each GPU model, but I don't understand how to easily detect model of GPU installed in PC.
What is the best way to solve this task? Does any way to do this that is not dependent on installed driver/some software?

The above comment by Ben Voigt summarizes it: Simply don't do it.
See if the minimum version of your favorite compute API (OpenCL or whatever) is supported, and if the required extensions are present, compile some kernels, and see if that produces errors. Run the kernels and benchmark them. Ask the API how much local/global memory you have available, what warp sizes it supports, and so on.
If you really insist on detecting the GPU model, prepare for trouble. There are two ways of doing this, one is parsing the graphic card's advertised human readable name, this is asking for trouble right away (since many cards that are hugely different will advertise the same human-readable name, and some model names even lie about their architecture generation!).
The other, slightly better way is finding the vendor/model ID combination and looking that one up. This works somewhat better but it is equally painful and error-prone.
You can parse these vendor and model IDs from the "key" string inside the structure that you get when you call EnumDisplayDevices. Which, if I remember correctly, Microsoft calls "reserved", in other words it's kind of unsupported/undocumented.
Finding out the vendor is still relatively easy. A vendor ID of 0x10DE is nVidia, and 0x1002 is AMD/ATI. 0x163C is Intel. However, sometimes, very rarely, a cheapish OEM will advertise its own ID instead.
Then you have the kind of meaningless model number (it's not like bigger numbers are better, or some other obvious rule!), which you need to look up somewhere. nVidia and AMD publish these officially [1] [2], although they are not necessarily always up-to-date. There was a time when nVidia's list lacked the most recent models for almost one year (though the list I just downloaded seems to be complete). I'm not aware of other manufacturers, including Intel, doing this consistently.
Spending some time on Google will lead you to sites like this one, which are not "official" but may allow you to figure out most stuff anyway... in a painstalking manner.
And then, you know the model, and you have gained pretty much nothing. You still need to translate this to "good enough for what I want" or "not good enough".
Which you could have found out simply by compiling your kernels and seeing that no error is reported, and running them.
And what do you do in 6 months when 3 new GPU models are released after your application which obviously cannot know these has already shipped? How do you treat these?

Related

How to link a program in GCC to prelinked library?

OK, I have the problem, I do not know exactly the correct terms in order to find what I am looking for on google. So I hope someone here can help me out.
When developing real time programs on embedded devices you might have to iterate a few hundred or thousand times until you get the desired result. When using e.g. ARM devices you wear out the internal flash quite quickly. So typically you develop your programs to reside in the RAM of the device and all is ok. This is done using GCC's functionality to split the code in various sections.
Unfortunately, the RAM of most devices is much smaller than the flash. So at one point in time, your program gets too big to fit in RAM with all variables etc. (You choose the size of the device such that one assumes it will fit the whole code in flash later.)
Classical shared objects do not work as there is nothing like a dynamical linker in my environment. There is no OS or such.
My idea was the following: For the controller it is no problem to execute code from both RAM and flash. When compiling with the correct attributes for the functions this is also no big problem for the compiler to put part of the program in RAM and part in flash.
When I have some functionality running successfully I create a library and put this in the flash. The main development is done in the 'volatile' part of the development in RAM. So the flash gets preserved.
The problem here is: I need to make sure, that the library always gets linked to the exact same location as long as I do not reflash. So a single function must always be on the same address in flash for each compile cycle. When something in the flash is missing it must be placed in RAM or a lining error must be thrown.
I thought about putting together a real library and linking against that. Here I am a bit lost. I need to tell GCC/LD to link against a prelinked file (and create such a prelinked file).
It should be possible to put all the library objects together and link this together in the flash. Then the addresses could be extracted and the main program (for use in RAM) can link against it. But: How to do these steps?
In the internet there is the term prelink as well as a matching program for linux. This is intended to speed up the loading times. I do not know if this program might help me out as a side effect. I doubt it but I do not understand the internals of its work.
Do you have a good idea how to reach the goal?
You are solving a non-problem. Embedded flash usually has a MINIMUM write cycle of 10,000. So even if you flash it 20 times a day, it will last a year and half. An St-Nucleo is $13. So that's less than 3 pennies a day :-). The TYPICAL write cycle is even longer, at about 100,000. It will be a long time before you wear them out.
Now if you are using them for dynamic storage, that might be a concern, depending on the usage patterns.
But to answer your questions, you can build your code into a library .a file easily enough. However, GCC does not guarantee that it links the object code in any order, as it depends on optimization level. Furthermore, only functions that are referenced in a library file is pulled in, so if your function calls change, it may pull in more or less library functions.

Most effective method to use parallel computing on different architectures

I am planning to write something to take advantages of the many devices that I have at home.
Basically my aim is to use the laptop to execute calculations, and also to use my main desktop computer to add more power (and finish the task quicker). I work with cellular simulation and chemical interactions, so to me would be great to take advantage of all that I have available at home.
I am using mainly OSX, so I need something that may work with that OS. I can code in objective-C, C and C++.
I am aware of GCD, OpenCL and MPI, but I am not sure which way to go.
I was planning to not use the full power of my desktop but only some of the available cores (in this way I can continue to work on the desktop doing other tasks that are not so resource intensive). In particular I would love to use the graphic card power (it is an ATI card, so no CUDA), since all that I do mainly is spreadsheet, word and coding with Xcode, and the graphic card resources are basically unused in that scenario.
Is there a specific set of libraries or API, among the aforementioned 3, that would allow me to selectively route tasks, and use resources on another machine without leaving the control totally to the compiler? I've heard that GCD is great but it has very limited control on where the blocks are executed, while MPI is on the other side of the spectrum....OpenCL seems to be in the middle.
Before diving in one of these technologies I would like to know which one would most likely suit my needs; I am sure that some other researcher has already used successfully parallel computing to achieve what I am trying to achieve.
Thanks in advance.
MPI is more for scientific computing large scale many processors many nodes exc not for a weekend project, for what you describe I would suggest using OpenCl or any one the more distributed framework of AMQP protocol families, such as zeromq or rabbitMQ, or a combination of OpenCl and AMQP , or even simpler consider multithreading , i would suggest OpenMP for that. I'm not sure if you are looking for direct solvers or parallel functions but there are many that exist as well for gpu's and cpu's which you can find on the web
Sorry, but this question simply cannot be meaningfully answered as posed. To be sure, I could toss out a collection of buzzwords describing various technologies to look at like GCD, OpenMPI, OpenCL, CUDA and any number of other technologies which allow one to run a single program on multiple cores, multiple programs on different cooperating computers, or a single program distributed across CPU and GPU, and it sounds like you know about a number of those already so I wouldn't even be adding much value in listing the buzzwords.
To simply toss out such terms without knowing the full specifics of the problem you're trying to solve, however, is a bit like saying that you know English, French and a little German so sure, by all means - mix them all together in a single paragraph without knowing anything about the target audience! Similarly, you can parallelize a given computation in any number of ways, across any number of different processing elements, but whether that parallelization is actually a win or not is going to be entirely dependent on the nature of the algorithm, its data dependencies, how much computation is expected for each reasonable "work chunk", and whether it can be executed on a GPU with sufficient numeric precision, among many other factors. The more complex the technology you choose, the more those factors matter and the greater the possibility that the resulting code will actually be slower than its single-threaded, single machine counterpart. IPC overhead and data copying can, and frequently do, swamp all of the gains one might realize from trying to naively parallelize something and then add additional overhead on top of that, resulting in a net loss. This is why engineers who can do this kind of work meaningfully and well are in such high demand. :)
Without knowing anything about your calculations, I would move in baby steps. First try a simple multi-processor framework like GCD (which is already built in to OS X and requires no additional dependencies to use) and figure out how to factor your code such that it can effectively use all of the available cores on a single machine. Once you've learned where the wins are (and if there even are any - if multi-threading isn't helping, multi-machine parallelization almost certainly won't either), try setting up several instances of the calculation on several machines with a simple IPC model that allows for distributing the work. Having already factored your algorithm(s) for multiple threads, it should be comparatively straight-forward to further generalize the approach across multiple machines (though it bears noting that the two are NOT the same problem and either way you still want to use all the cores available on any of the given target machines, so the two challenges are both complimentary and orthogonal).

Porting Wii and/or PSOne Games to OpenGL ES

I have been asked to investigate porting Wii games and some (Sony) PSOne games to OpenGL ES (can you guess what platform?).
I have never undertaken a game port like this before (and will be hiring someone to do it) but I'd like to understand the process.
Does the Wii use OpenGL? If not what does it use and how easy is it to port to OpenGL / OpenGL ES?
Are there any resources/books/blogs that will help me in understanding the process?
Will my company have to become an official Wii developer? If so where do I start that process?
Porting from the Wii or the PSOne is a complex and involved task that can be broken down into multiple separate engineering efforts working in parallel to produce a working end product. The best possible thing you can do before moving to the target hardware is to compartmentalize all of the non-portable code while ensuring that the game continues to run as expected. When you commit to moving to the new platform, your effort switches to reimplementing the non-portable compartmentalized parts.
So, to answer your question, yes, you will need to become or work with a Sony and Nintendo licensed developer in order to take this approach. In the case of Sony, I don't even know if they offer a PSOne development program anymore which presents issues. Your Sony account rep can help clarify.
The major subsystems that are likely to be the focus of your porting effort are:
Rendering Graphics code contains fundamental assumptions about the hardware it is being run on in order to perform optimally. API-level compatibility is superficial compatibility and does not get you as much as you may hope it does. Plan on finding the entry point to the renderer and determining what data you need to render a scene and rewriting all the render code from there for your target hardware.
Game Saving Game state serialization and archival will need to be separated out. Older games often fwrite() structs with #pragma packed fields. Is that still going to work for you?
Networking Wii games write to high level services that are unavailable on your target hardware. At the low level, sockets are still sockets. What network services do your Wii games rely on?
Controls From where you are coming from to where you are going, anything short of a full redesign or reimagining of input will result in poor reviews of the software.
Memory Management Console games often make fundamental assumptions about the rate the system software returns memory from the heap, how much fragmentation it will cause and the duration the game needs to operate under these conditions. These memory management assumptions are obsolete on the new platform. It is wise to write your own memory manager that provides a cushion from the operating system. Also, console games compiled for release are stripped of most error handling and don't gracefully handle running out of memory-- just a heads up.
Content Your bottleneck will be system memory. Can you fit the necessary assets into memory? With textures, you can reduce mip where necessary and with graphics hardware timing, you can pull in the far clipping plane. With assets resident in memory, you may need a technical artist to go through and reduce the face density of your models or an animation programmer to implement a more size-friendly animation codec. This is very game specific.
You also run into the standard set of problems with things like bit compatibility (though the Wii and PSOne are both 32-bit), compiler idiosyncrasies, build script incompatibilities and proprietary compiler extensions.
Games are relatively challenging to test. A good rule of thumb is you want to have enough testers on your team to run through the game in a maximum of two days, covering all major aspects of play. In games that take a long time to beat (RPGs with 30+ hours of gameplay), your testing team needs to be quite large to offer full coverage. Because you are just doing a port, you can come up with a testing plan that maximizes coverage of your new code without having a testing team punch every wall in your game to make sure it (still) has clipping. The game shipped once.
Becoming a licensed developer requires you to apply. The turnaround time, from experience, is not good. Generally speaking, priority is given to studios with shipped titles and organized offices with reasonably good security and the ability to buy the (relatively) expensive development kits. You may be better off working with a licensed developer if you do not meet these criteria.
Console and game development is challenging for people already experienced in it. There is no book that covers it all. My recommendation is to attempt to recruit an expert who has experience shipping titles in a position of systems or engine programmer. What types of programmers and skillsets exist in games is a whole different question for Stack, though.
Games consoles don't use OpenGL but their own, custom libraries. The main reason is that they are pretty slow and have little RAM. So you need to squeeze out every drop of performance you can get. And that means: Custom code. Usually, you get a framework with the developer kit which gets you started and then, you build your code from that. Eventually, you'll start replacing parts from the developer kit with your own special code to get all the speed and special effects you need.
There is a reason why PSOne games are so ugly on the PS3 despite the fact that the developers have access to the sources: Revenue just doesn't justify to touch the code.
Which is one reason why game development is so expensive: Every game is (more or less) a completely new product. Sometimes, game companies can reuse a bit of code from the last version but more often than not, they have to develop everything again. They also don't talk much with each other.
In recent years, kits have become more complex and powerful and you can get complete game engines (with all kinds of effects and 3D support) but each engine is a completely different kind of beast, so you can't even copy code from engine A to B.
Today, media content (video, audio and render sequences) are so expensive that the actual game engine is often a minor detail, so this isn't going to change any time soon.
Net result: If you want to port a game, write an emulator for the hardware (which is usually pretty simple and allows you to run all kinds of games).
[EDIT] To develop software for the Wii, see here: http://www.warioworld.com/
For a Wii emulator, see http://wiiemulator.net/
I ported a couple of games, when I was a new game programmer, from working with one version of our engine to a newer version (where backwards compatibility was neither ignored nor pursued). Even copying (and possibly renaming) the files and placing them in a home in the new project was a bit of work. Following that, the procedure was:
recompile
fix many of the hundreds of errors [in many places, with the same error occurring over and over again]
and
"wire up" calls from the new game engine to the appropriate calls in the old code
"wire up" function calls from the old code into the new game engine
deal with other oddities (ex. in the old game engine, the 2d game would "swizzle" textures itself; in the new version, the engine did it (on specific platforms))
and, while I don't recall this clearly, it was probably mixed in with a bunch of #ifdeffing out portions of code so the thing would actually compile, and possibly creating function stubs to be filled in later.
As I recall, it was three or four days until I had something that compiled. (But, it did help when we ported other games from the old version to the new one!)
The magnitude of the task will come down to what the code you are getting is like. If it has generic 3D calls that you can intercept -- add a thunking layer to -- then you are in business. It depends on the level of abstraction in the code. If it is well-behaved and has things like "RenderModel" and "RenderWorld" calls, you can replace those functions, and even the structures that they work with. If drawing is occurring all over the place, and calls are more like "Draw Polygon" and "Draw Line" or "Draw using this highly optimised data structure", then you are likely in for a long slog.
You shouldn't need a Wii dev kit. Sometimes it is nice to verify that the code you are given does indeed compile in the original environment (and matches the shipping code!), but sometimes you can just take it on faith and make it work in its new environment.
Lastly, I don't think the Wii uses OpenGL, and I really don't know where to point you for further help.
What you may want to do is to start with designing the architecture of the game, write up a detailed specification for what the new game is like.
Once you have this, since you will be rewriting the code, you may find that some of the business logic that doesn't deal with the console can be ported over. But, anything dealing with I/O, user interaction or graphics/sounds will be rewritten, so you might as well do that from scratch.
A specification is very important, to make certain that you know how the current game is working so that the new port will give the same user experience, if that is what is desired.
You may want to keep the same bugs, if that is part of the experience, as, if I know that in the Wii I can jump down and bounce off the wall to safely land, then if I can't do that in the new version then that may be bothersome.
Well porting a PS1 game to an iPhone would be quite a task they work in very different ways. I'm sure its doable but it will be a LOT of work to replace all the fixed point maths and lack of Z-Buffer based rendering to a real graphics chip.
Wii would be a lot easier. The Wii API is very similar to OpenGL. However the Wii has some very nice fixed function features that just are not available on any other GL based platform. Should be doable, though ...
I'm not really sure I can say anything more than that. Have signed far too many NDAs over the years to be 100% sure of what I can and cannot say ;)
Still if you want to hire someone to do some porting work and are prepared to supply the required hardware then I might be free ;)

How to assemble a project with software products and your own code

Let's say you have a specific project on hand, it can be divided to parts, and you are not completely sure about all the difficulties that will arise.
Time is of the essence.
How do you decide whether a part should use software product or your own code? (considering, that some tools are awesome, but will require much time to learn)
How do you choose the right software product?
How much time (as a percentage) should this stage of choosing the right product, if any, take, and how much time to evaluate a single product?
Is there a way-back, is it o.k to change your mind, after putting efforts in a product, and finding it not suitable?
I would love to hear any rules of thumb about those.
Changing your decisions is like changing your blueprint for a house while it's already being built.
It will entirely depend on what you have spent in time and money to that point.
Some considerations:
0) Understand the problem in clear and simple terms before beginning. Know what's critical to it's success and then use that list to see if any software, language, or tool will aid it, and at what cost, and if the cost outweighs the benefit.
1) Use a crammer's schedule. Build it in the order of what you would build if you only had 1 day or 1 week and no more to work on it. It's amazing how much doesn't matter anymore when you have to do 50% of the features at 100% of the quality. Focus on value, value, value. Read something like 37 Signal's book Getting Real for more on this.
2) Do not re-invent the wheel. It's always easier it seems to build something from scratch. Unless you are doing a fraction of the implementation and it's truly simpler, meaning you can avoid abstraction until you forget what you were building, consider it. If you can build it faster, better, cheaper and in the same amount of time, do it.
3) Know the features of your tools, and the benefits any tools need to give your solution. You should be familiar with or at least aware of many of the tools out there that you may or may not integrate.
4) Pick a language that is used to solve a lot of problems. Chances are you will find many great libraries and tools to build your software that will save your time. If you need something that delivers, can run, and you can lean on the smarts of others, use something established, or a language that can access .NET or Java easily if need be.
For each part of your software you recognize as a software component/package:
How do you decide whether a part should use software product or your own code?
(considering, that some tools are awesome, but will require much time to learn)
Ask yourself whether the component you are considering is a part of your product's main business core.
If not then it is usually better to use an existing solution and not send too much time on it.
If it is then make sure there is no existing product that is better than what you are planning. - It there is, consider purchasing licenses to it instead of developing your product.
Search online for similar components (commercial, open source and even articles/demo-source-code).
Do any of them implement all of your requirements from the components?
How much do they cost, would it cost you more to develop and maintain a similar component?
What are the license conditions? - Are they OK for your product?
If component includes a user-interface, is it plesent to look at and easy to use?
If you answered yes to all the above then do not develop the component yourself.
If not:
Is the component open source or published in an article / demo-code? - If so, it robust, could you take the code an improve it or use it as an example to help you write code that is more suitable for your requirements? - If so write your own code, use code as part of your own component that is not developed from scratch.
If your answer to the above is no, then you'll have to develop your own (or you're searching in the wrong places).
How do you choose the right software product?
See answers to 1.
How much time (as a percentage) should this stage of choosing the right product, if any, take, and how much time to evaluate a single product?
Clear an entire day, search for existing components, read about them (features, prices, reviews) and download + install up to 5 of them.
Clear another day evaluate 2-3 products, compare demos/examples, look at code, write 2 small examples of using each (same example different product).
If you choose more than 3, clear another day and test the others.
Is there a way-back, is it o.k to change your mind, after putting efforts in a product, and finding it not suitable?
Always design your software so that every component is replaceable.
This guarantees that there is always "a way back".
(Use interfaces & adapter design pattern, divide to many assemblies, connect all components as loosely as possible (using events, binding, as etc.) - loose coupling.
Even if you implement something yourself make sure there is a way back - sometime you may use the wrong technology/design and have to replace a component with a new one you develop/purchase.
Other rules of thumb:
Consider which application-wide technologies to use before considering each component.
Writing in assembly would take the longest, in C less, in C++ even less, in more modern languages such as C#, Java, Delphi even less.
Which has more of the self components that are relevant to you? What does your team have experience in.
If you are using .NET (C#), then WPF could help you lower the coupling between GUI and business logic and make a better looking GUI, however it take time to learn how to use it (a 5 day minimum course is very much recommended).
As in any art the difficulty is composing a good solution based on a very large possible solutions space. There as many ways to go about this as there are developers.
I’d normally spend some time understanding the problem and stating it clearly and succinctly as possible, preferably in a written form. The problem description should be completely abstracted away from any possible solutions. Next I’d normally list available constraints that will need to be applied to the solution (time, budget, legal, political, performance, usability, skill availability within team and so on).
Then the theory goes that you need to look on the market for something that solves the problem and meets the constraints at the same time. In practise, the process is not that straight-forward: you try to identify market categories that are likely to be useful, then research them, see what is available and continuously try to reduce the gap between the constraints and capabilities as much as possible, often by going back and revisiting and re-negotiating the constraints.
A few generic tips:
During the research keep coming back to the original problem.
There is always more than one solution, try to extend breadth (concentrating on very different ways of solving the problem) of the search space before going deeper.
Be clear on a number of options it’s worth researching, and amount of time worth spending on each of them before making a decision whether to investigate further.
It’s seldom worth finding an optimal solution, especially then technological landscape keeps changing very rapidly. Look for a solution that is good enough: “The Paradox of Choice - Why More is Less”.
It’s rarely worth turning to users for help (unless they are software experts) on choosing between several options. If you’ve got a number of options all looking equally attractive that means you need to go back and understand the original problem better, it’s likely you’ve missed a requirement or two.
Some further notes on using third-party components (refers to GUI components, but easy to apply to other software areas as well).
And even more notes on scoping, composing and researching for a project.
How do you decide whether a part should use software product or your own code? (considering, that some tools are awesome, but will require much time to learn)
Ask your self two questions.
1) Is it a mature product. If yes, then
2) How long it would take to create the functionality it provides on your own. If that value times your hourly rate is greater than the cost of the product, then use that product.
How do you choose the right software product?
Consult your network of other developers. Have they used it, did they run into problems. Consult the interweb. Create a prototype using the product. Does it work well? Any major bugs?
How much time (as a percentage) should this stage of choosing the right product, if any, take, and how much time to evaluate a single product?
It depends on the size of the project, and the criticality of the product to the success. Most of the time, you are going to be able to get a high level view of the product in a very short amount of time.
It may be just a few minutes using it before you say, nope - not ready for prime time. If it makes past that, a day or two of experimentation may tell you that it passes muster for your project.
If it's a huge project with many developers, then you probably want to spend more time doing a prototype application with it to be sure it's worth investing all that time in.
Is there a way-back, is it o.k to change your mind, after putting efforts in a product, and finding it not suitable?
If you find it's not working out, there's nothing wrong with going back. In fact you probably have to. Ideally you will find this out early. Not at the 11th hour. Again, this is the purpose of prototyping.
There are already some really good answers here, so I won't repeat it, however there is one point you should definitely consider, and though I would have thought its obvious I havent seen it mentioned here yet:
The personnel you have available to implement the solution, their core competency, and their general level of competence.
Who you have to implement this (assuming it's a team, and not just yourself - but relevant even if its just you, too...) can have a HUGE effect on the outcome. If you don't have experienced programmers to help you develop this, you're better off looking for some OTS product to do the work for you... Or, even if you have programmers who are not likely to succeed, you still might want to find a solution with lower overall project risk.

What's the difference between Managed/Byte Code and Unmanaged/Native Code?

Sometimes it's difficult to describe some of the things that "us programmers" may think are simple to non-programmers and management types.
So...
How would you describe the difference between Managed Code (or Java Byte Code) and Unmanaged/Native Code to a Non-Programmer?
Managed Code == "Mansion House with an entire staff or Butlers, Maids, Cooks & Gardeners to keep the place nice"
Unmanaged Code == "Where I used to live in University"
think of your desk, if you clean it up regularly, there's space to sit what you're actually working on in front of you. if you don't clean it up, you run out of space.
That space is equivalent to computer resources like RAM, Hard Disk, etc.
Managed code allows the system automatically choose when and what to clean up. Unmanaged Code makes the process "manual" - in that the programmer needs to tell the system when and what to clean up.
I'm astonished by what emerges from this discussion (well, not really but rhetorically). Let me add something, even if I'm late.
Virtual Machines (VMs) and Garbage Collection (GC) are decades old and two separate concepts. Garbage-collected native-code compiled languages exist, even these from decades (canonical example: ANSI Common Lisp; well, there is at least a compile-time garbage-collected declarative language, Mercury - but apparently the masses scream at Prolog-like languages).
Suddenly GCed byte-code based VMs are a panacea for all IT diseases. Sandboxing of existing binaries (other examples here, here and here)? Principle of least authority (POLA)/capabilities-based security? Slim binaries (or its modern variant SafeTSA)? Region inference? No, sir: Microsoft & Sun does not authorize us to even only think about such perversions. No, better rewrite our entire software stack for this wonderful(???) new(???) language§/API. As one of our hosts says, it's Fire and Motion all over again.
§ Don't be silly: I know that C# is not the only language that target .Net/Mono, it's an hyperbole.
Edit: it is particularly instructive to look at comments to this answer by S.Lott in the light of alternative techniques for memory management/safety/code mobility that I pointed out.
My point is that non technical people don't need to be bothered with technicalities at this level of detail.
On the other end, if they are impressed by Microsoft/Sun marketing it is necessary to explain them that they are being fooled - GCed byte-code based VMs are not this novelty as they claim, they don't solve magically every IT problem and alternatives to these implementation techniques exist (some are better).
Edit 2: Garbage Collection is a memory management technique and, as every implementation technique, need to be understood to be used correctly. Look how, at ITA Software, they bypass GC to obtain good perfomance:
4 - Because we have about 2 gigs of static data we need rapid access to,
we use C++ code to memory-map huge
files containing pointerless C structs
(of flights, fares, etc), and then
access these from Common Lisp using
foreign data accesses. A struct field
access compiles into two or three
instructions, so there's not really
any performance. penalty for accessing
C rather than Lisp objects. By doing
this, we keep the Lisp garbage
collector from seeing the data (to
Lisp, each pointer to a C object is
just a fixnum, though we do often
temporarily wrap these pointers in
Lisp objects to improve
debuggability). Our Lisp images are
therefore only about 250 megs of
"working" data structures and code.
...
9 - We can do 10 seconds of Lisp computation on a 800mhz box and cons
less than 5k of data. This is because
we pre-allocate all data structures we
need and die on queries that exceed
them. This may make many Lisp
programmers cringe, but with a 250 meg
image and real-time constraints, we
can't afford to generate garbage. For
example, rather than using cons, we
use "cons!", which grabs cells from an
array of 10,000,000 cells we've
preallocated and which gets reset
every query.
Edit 3: (to avoid misunderstanding) is GC better than fiddling directly with pointers? Most of the time, certainly, but there are alternatives to both. Is there a need to bother users with these details? I don't see any evidence that this is the case, besides dispelling some marketing hype when necessary.
I'm pretty sure the basic interpretation is:
Managed = resource cleanup managed by runtime (i.e. Garbage Collection)
Unmanaged = clean up after yourself (i.e. malloc & free)
Perhaps compare it with investing in the stock market.
You can buy and sell shares yourself, trying to become an expert in what will give the best risk/reward - or you can invest in a fund which is managed by an "expert" who will do it for you - at the cost of you losing some control, and possibly some commission. (Admittedly I'm more of a fan of tracker funds, and the stock market "experts" haven't exactly done brilliant recently, but....)
Here's my Answer:
Managed (.NET) or Byte Code (Java) will save you time and money.
Now let's compare the two:
Unmanaged or Native Code
You need to do your own resource (RAM / Memory) allocation and cleanup. If you forget something, you end up with what's called a "Memory Leak" that can crash the computer. A Memory Leak is a term for when an application starts using up (eating up) Ram/Memory but not letting it go so the computer can use if for other applications; eventually this causes the computer to crash.
In order to run your application on different Operating Systems (Mac OSX, Windows, etc.) you need to compile your code specifically for each Operating System, and possibly change alot of code that is Operating System specific so it works on each Operating System.
.NET Managed Code or Java Byte Code
All the resource (RAM / Memory) allocation and cleanup are done for you and the risk of creating "Memory Leaks" is reduced to a minimum. This allows more time to code features instead of spending it on resource management.
In order to run you application on different Operating Systems (Mac OSX, Windows, etc.) you just compile once, and it'll run on each as long as they support the given Framework you are app runs on top of (.NET Framework / Mono or Java).
In Short
Developing using the .NET Framework (Managed Code) or Java (Byte Code) make it overall cheaper to build an application that can target multiple operating systems with ease, and allow more time to be spend building rich features instead of the mundane tasks of memory/resource management.
Also, before anyone points out that the .NET Framework doesn't support multiple operating systems, I need to point out that technically Windows 98, WinXP 32-bit, WinXP 64-bit, WinVista 32-bit, WinVista 64-bit and Windows Server are all different Operating Systems, but the same .NET app will run on each. And, there is also the Mono Project that brings .NET to Linux and Mac OSX.
Unmanaged code is a list of instructions for the computer to follow.
Managed code is a list of tasks for the computer follow that the computer is free to interpret on its own on how to accomplish them.
The big difference is memory management. With native code, you have to manage memory yourself. This can be difficult and is the cause of a lot of bugs and lot of development time spent tracking down those bugs. With managed code, you still have problems, but a lot less of them and they're easier to track down. This normally means less buggy software, and less development time.
There are other differences, but memory management is probably the biggest.
If they were still interested I might mention how a lot of exploits are from buffer overruns and that you don't get that with managed code, or that code reuse is now easy, or that we no longer have to deal with COM (if you're lucky anyway). I'd probably stay way from COM otherwise I'd launch into a tirade over how awful it is.
It's like the difference between playing pool with and without bumpers along the edges. Unless you and all the other players always make perfect shots, you need something to keep the balls on the table. (Ignore intentional ricochets...)
Or use soccer with walls instead of sidelines and endlines, or baseball without a backstop, or hockey without a net behind the goal, or NASCAR without barriers, or football without helmets ...)
"The specific term managed code is particularly pervasive in the Microsoft world."
Since I work in MacOS and Linux world, it's not a term I use or encounter.
The Brad Abrams "What is Managed Code" blog post has a definition that say things like ".NET Framework Common Language Runtime".
My point is this: it may not be appropriate to explain it the terms at all. If it's a bug, hack or work-around, it's not very important. Certainly not important enough to work up a sophisticated lay-persons description. It may vanish with the next release of some batch of MS products.

Resources