How to split memory between mapreducer and hbase - hadoop

I have a machine with 24 G memory and want to run hdfs, map-reducer and hbase on them but I want to split the memory between the map-reducer and hbase.
I want hbase to use a maximum of 15G ram and map-reducer to get 8G max. What is the best way to achieve it?

In your configuration files you can specify how much each process is allowed to have.
HBase is controled by the hbase-env.sh
mapreduce is controlled by the mapred-site.xml
There are good comments in each of the file to help you locate the exact property you are looking for.
The most tricky one is the mapreduce: depending on how many slots you want to have you have to divide the maximum memory you are willing to give to mapreduce by the number of slots you make available on the machine. So, if you only want one slot, you can set the max child memory to 8GB; 2 slots gives you 4GB; etc.
You can also set the child memory to be final in the mapred-site.xml file so that the tasks themselves can't override it.

Related

Map Reduce Slot Definition

I am on my way for becoming a cloudera Hadoop administrator. Since my start, I am hearing a lot about computing slots per machine in a Hadoop Cluster like defining number of Map Slots and Reduce slots.
I have searched internet for a log time for getting a Noob definition for a Map Reduce Slot but didn't find any.
I am really pissed off by going through PDF's explaining the configuration of Map Reduce.
Please explain what exactly it means when it comes to a computing slot in a Machine of a cluster.
In map-reduce v.1 mapreduce.tasktracker.map.tasks.maximum and mapreduce.tasktracker.reduce.tasks.maximum are used to configure number of map slots and reduce slots accordingly in mapred-site.xml.
starting from map-reduce v.2 (YARN), containers is a more generic term is used instead of slots, containers represents the max number of tasks that can run in parallel under the node regardless being Map task, Reduce task or application master task (in YARN).
generally it depends on CPU and memory
In out cluster, we set 20 map slot and 15 reduce slot for a machine with 32Core,64G memory
1.approximately one slot needs one cpu core
2.number of map slot should be a little more than reduce
IN MRV1 each machine had fixed number of Slots dedicated for maps and reduce.
In general each machine is configured with 4:1 ratio of maps:reducer on a machine .
logically one would be reading lot of data(Maps) and crunching them to small set(Reduce).
In MRV2 concept of containers came in and any container can run either a map/reducer/shell script .
A bit late though, I'll answer anyways.
Computing Slot. Can you think of all the various computations in the Hadoop that would require some resource i.e. memory/CPUs/Disk Size.
Resource = Memory or CPU-Core or Disk Size required
Allocating resource to start a Container, allocating resource to perform a map or a reduce task etc.
It is all about how you would want to manage the resources you have in hand. Now what would that be? RAM, Cores, Disks Size.
Goal is to ensure your processing is not constrained by any one of these cluster resources. You want your processing to be as dynamic as possible.
As an example, Hadoop YARN allows you to configure min RAM required to start a YARN container, min RAM require to start a MAP/REDUCE task, JVM Heap Size (for Map and Reduce tasks) and the amount of virtual memory each task would get.
Unlike Hadoop MR1, you do not pre-configure (as an example RAM size) before you even begin executing Map-Reduce tasks. In the sense you would want your resource allocation to be as elastic as possible, i.e. dynamically increase RAM/CPU cores for either MAP or a REDUCE task.

Flexible heap space allocation to Hadoop MapReduce Mapper tasks

I'm having trouble figuring out the best way to configure my Hadoop cluster (CDH4), running MapReduce1. I'm in a situation where I need to run both mappers that require such a large amount of Java heap space that I couldn't possible run more than 1 mapper per node - but at the same time I want to be able to run jobs that can benefit from many mappers per node.
I'm configuring the cluster through the Cloudera management UI, and the Max Map Tasks and mapred.map.child.java.opts appear to be quite static settings.
What I would like to have is something like a heap space pool with X GB available, that would accommodate both kinds of jobs without having to reconfigure the MapReduce service each time. If I run 1 mapper, it should assign X GB heap - if I run 8 mappers, it should assign X/8 GB heap.
I have considered both the Maximum Virtual Memory and the Cgroup Memory Soft/Hard limits, but neither will get me exactly what I want. Maximum Virtual Memory is not effective, since it still is a per task setting. The Cgroup setting is problematic because it does not seem to actually restrict the individual tasks to a lower amount of heap if there is more of them, but rather will allow the task to use too much memory and then kill the process when it does.
Can the behavior I want to achieve be configured?
(PS you should use the newer name of this property with Hadoop 2 / CDH4: mapreduce.map.java.opts. But both should still be recognized.)
The value you configure in your cluster is merely a default. It can be overridden on a per-job basis. You should leave the default value from CDH, or configure it to something reasonable for normal mappers.
For your high-memory job only, in your client code, set mapreduce.map.java.opts in your Configuration object for the Job before you submit it.
The answer gets more complex if you are running MR2/YARN since it no longer schedules by 'slots' but by container memory. So memory enters the picture in a new, different way with new, different properties. (It confuses me, and I'm even at Cloudera.)
In a way it would be better, because you express your resource requirement in terms of memory, which is good here. You would set mapreduce.map.memory.mb as well to a size about 30% larger than your JVM heap size since this is the memory allowed to the whole process. It would be set higher by you for high-memory jobs in the same way. Then Hadoop can decide how many mappers to run, and decide where to put the workers for you, and use as much of the cluster as possible per your configuration. No fussing with your own imaginary resource pool.
In MR1, this is harder to get right. Conceptually you want to set the maximum number of mappers per worker to 1 via mapreduce.tasktracker.map.tasks.maximum, along with your heap setting, but just for the high-memory job. I don't know if the client can request or set this though on a per-job basis. I doubt it as it wouldn't quite make sense. You can't really approach this by controlling the number of mappers just because you have to hack around to even find out, let alone control, the number of mappers it will run.
I don't think OS-level settings will help. In a way these resemble more how MR2 / YARN thinks about resource scheduling. Your best bet may be to (move to MR2 and) use MR2's resource controls and let it figure the rest out.

Hadoop single node configuration on the high memory machine

I have a single node instance of Apache Hadoop 1.1.1 with default parameter values (see e.g. [1] and [2]) on the machine with a lot of RAM and very limited free disk space size. Then, I notice that this Hadoop instance wastes a lot of disk space during map tasks. What configuration parameters should I pay attention to in order to take advantage of high RAM capacity and decrease disk space usage?
You can use several of the mapred.* params to compress map output, which will greatly reduce the amount of disk space needed to store mapper output. See this question for some good pointers.
Note that different compression codecs will have different issues (i.e. GZip needs more CPU than LZO, but you have to install LZO yourself). This page has a good discussion of compression issues in Hadoop, although it is a bit dated.
The amount of RAM you need depends upon what you are doing in your map-reduce jobs, although you can increase your heap-size in:
conf/mapred-site.xml mapred.map.child.java.opts
See cluster setup for more details on this.
You can use dfs.datanode.du.reserved in hdfs-site.xml to specify an amount of disk space you won't use. I don't know whether hadoop is able to compensate with higher memory usage.
You'll have a problem, though, if you run a mapreduce job that's disk i/o intensive. I don't think any amount of configuring will help you then.

How to make Hadoop use all the cores on my system?

I have a 32 core system. When I run a MapReduce job using Hadoop I never see the java process use more than 150% CPU (according to top) and it usually stays around the 100% mark. It should be closer to 3200%.
Which property do I need to change (and in which file) to enable more workers?
There could be two issues, which I outline below. I'd also like to point out that this is a very common question and you should look at the previously asked Hadoop questions.
Your mapred.tasktracker.map.tasks.maximum could be set low in conf/mapred-site.xml. This will be the issue if when you check the JobTracker, you see several pending tasks, but only a few running tasks. Each task is a single thread, so you would hypothetically need 32 maximum slots on that node.
Otherwise, likely your data is not being split into enough chunks. Are you running over a small amount of data? It could be that your MapReduce job is running over only a few input splits and thus does not require more mappers. Try running your job over hundreds of MB of data instead and see if you still have the same issue.
Hadoop automatically splits your files. The number of blocks a file is split up into is the total size of the file divided by the block size. By default, one map task will be assigned to each block (not each file).
In your conf/hdfs-site.xml configuration file, there is a dfs.block.size parameter. Most people set this to 64 or 128mb. However, if you are trying to do something tiny you could set this up to split up the work more.
You can also manually split your file into 32 chunks.
I think you need to set "mapreduce.framework.name" to "yarn",because the default value is "local".
put the following into your mapred-site.xml
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>

Hadoop workload

I am currently using wordcount application in hadoop as a benchmark. I find that the cpu usage is fairly nearly constant around 80-90%. I would like to have a fluctuating cpu usage. Is there any hadoop application that can give me this capability? Thanks a lot.
I don't think there's a way to throttle or specify a range for hadoop to use. Hadoop will use the CPU available to it. When I'm running a lot of jobs, I'm constantly in the 90%+ range.
One way you can control the CPU usage is to change the maximum number of mappers/reducers each tasktracker can run simultaneously. This is done through the
mapred.tasktracker.{map|reduce}.tasks.maximum setting in $HADOOP_HOME/conf/core-site.xml.
It will use less CPU on that tasktracker when the number of mapper/reducers is limited.
Another way is to set the configuration value for mapred.tasktracker.{map|reduce}.tasks when setting up the job. This will force that job to use that many mappers/reducers. This number will be split across the available tasktrackers, so if you have 4 nodes and want each node to have 1 mapper you'd set mapred.tasktracker.map.tasks to 4. It's also possible that if a node can run 4 mappers, it will run all 4, I don't know exactly how hadoop will split out the tasks, but forcing a number, per job, is an option.
I hope that helps get you to where you're going. I still don't quite understand what you are looking for. :)

Resources