Digital frequency doubler with a dual edge triggered flip flop in VHDL - vhdl

I am trying to implement a digital input frequency doubler. The circuit consists of an XOR2 gate, dual edge triggered flip flop and a couple of buffers.
The frequency-in goes to one of the Xor inputs. The output of the Xor gate goes through a buffer and into the clock signal of the DFF. The output(ussually Q) used in parallel to feed the remaining Xor input and to feedback to the D input of the flip flop through a buffer. finally the output of the doubler is taken from the Xor gate.
I have tested the circuit and it works.I am a novice in VHDL and have very basic knowledge in verilog. I figured i'd analyse it for practice so that i get a feel of VHDL before third year.
Regards
Stranger

if anyone in the future is suffering the same fate I am here is the ALMOST FINISHED. all you gotta do is find a way of using clk'event in place of if (clk ='1' and clk'EVENT).
Schematic is here
entity freq_doubler is
PORT (
vin : in BIT ;
vout : out BIT );
end entity freq_doubler;
architecture rtl of freq_doubler is
signal q : bit;
signal d,clk,buff : bit ;
begin
buff <= (vin XOR q);
clk <= buff;
vout <=buff;
p0: process (d,clk) is
begin
if (clk ='1' and clk'EVENT) then
q <=d;
end if;
end process p0;
end architecture rtl;
configuration freq_doubler_conf of freq_doubler is
for rtl
end for;
end configuration freq_doubler_conf;

Related

1-cycle enable signal in a clocked process

I am taking a vhdl online course.
One of the laboratory work is: "Based on frequency divider and 8-bit cyclic shift register implement a ring counter with a shift period of 1 s."
The task says that the most significant bit of the counter cannot be used as the clock signal of the shift register (i.e. in the if rising_edge (shifter (MSB)) construction.
It is necessary to form the enable signal as a strobe.
I did the job. The result is accepted.
I have a question related to shift register by enable.
shift_reg_proc : process(clk)
begin
if (rising_edge(clk)) then
if (srst = '1') then
shift_reg <= "10000000";
elsif (en = '1') then
shift_reg <= shift_reg(0) & shift_reg(7 downto 1);
end if;
end if;
end process shift_reg_proc
If the duration of the enable signal is 1 period clk, then there is a probability that at the moment of rising_edge (clk) the en signal level will not have time to become = 1.
If this is the case, then it is not guaranteed that the register shift will occur in the next second.
Is there any "correct" way to do this task?
Is it so? Is my decision correct? Is the lab clue misleading?
I am attaching the implementation code, test bench and wave image.
ring_counter.vhd
--------------------------------------------------------------------------------
-- Based on frequency divider and 8-bit cyclic shift register implement a ring
-- counter with a shift period of 1 s.
--------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
entity ring_counter is
port(clk : in std_logic;
srst : in std_logic;
dout : out std_logic_vector(7 downto 0);
en_o : out std_logic
);
end entity ring_counter;
architecture behave of ring_counter is
signal cntr : std_logic_vector(26 downto 0) := (others => '0');
signal cntr_msb_delayed : std_logic;
signal shift_reg : std_logic_vector(7 downto 0);
signal en : std_logic;
constant cntr_msb_num : integer := 4; -- 26 for DE board, 4 for test bench
begin
-- signal for test bench
en_o <= en;
--------------------------------------------------------------------------------
-- Counter implementation
--------------------------------------------------------------------------------
cntr_proc : process(clk)
begin
if (rising_edge(clk)) then
if (srst = '1') then
cntr <= (others => '0');
else
cntr <= unsigned(cntr) + 1;
end if;
end if;
end process cntr_proc;
----------------------------------------------------------------------------
-- Shift register implementation
----------------------------------------------------------------------------
shift_reg_proc : process(clk)
begin
if (rising_edge(clk)) then
if (srst = '1') then
shift_reg <= "10000000";
elsif (en = '1') then
shift_reg <= shift_reg(0) & shift_reg(7 downto 1);
end if;
end if;
end process shift_reg_proc;
dout <= shift_reg;
----------------------------------------------------------------------------
-- Enable signal generation
----------------------------------------------------------------------------
-- Counter MSB delay for 1 period of clk
delay_proc : process(clk)
begin
if (rising_edge(clk)) then
cntr_msb_delayed <= cntr(cntr_msb_num);
end if;
end process delay_proc;
en <= cntr(cntr_msb_num) and not cntr_msb_delayed;
end architecture behave;
ring_counter_tb.vhd
library ieee;
use ieee.std_logic_1164.all;
entity ring_counter_tb is
end entity ring_counter_tb;
architecture behave of ring_counter_tb is
component ring_counter is
port(clk : in std_logic;
srst : in std_logic;
dout : out std_logic_vector(7 downto 0);
en_o : out std_logic
);
end component ring_counter;
signal clk : std_logic;
signal srst : std_logic;
signal dout : std_logic_vector(7 downto 0);
signal en_o : std_logic;
constant clk_period : time := 4 ns;
begin
dut : ring_counter
port map (
clk => clk,
srst => srst,
dout => dout,
en_o => en_o
);
clk_gen : process
begin
clk <= '0';
wait for clk_period;
loop
clk <= '0';
wait for clk_period/2;
clk <= '1';
wait for clk_period/2;
end loop;
end process clk_gen;
srst <= '0',
'1' after 100 ns,
'0' after 150 ns;
end architecture behave;
wave for test bench
TL;DR
The rising edge of clk after which en is raised is not the same as the rising edge of clk at which your shift register shifts. en is asserted high after rising edge N and de-asserted after rising edge N+1. Your shift register is thus shifted at rising edge N+1.
So you have about one clock period delay between assertions of en and the register shifts. You don't care because your specification says that you want a shift period of 1 second. As long as en is periodic with a period of one second, even if there is a small constant delay between en and your shift register, you fulfill the specifications.
But what is of uttermost importance is that, as it is seen by your shift register, en is asserted high sufficiently after rising edge N to avoid a too early shift and de-asserted sufficiently after rising edge N+1 to allow a good nice shift. If you are interested in this too, please continue reading.
Detailed explanation
Your en signal is computed from the outputs of registers synchronized on the same clock clk as your shift register. You cannot have any hold time problem there: the propagation delay from the rising edge of the clock to the outputs of your cntr and cntr_msb_delayed registers guarantee that en will arrive at your shift register sufficiently after the rising edge of the clock that caused it (assuming you don't have large clock skews). It cannot arrive too early.
Can it arrive too late (setup time problem)? Yes, if your clock frequency is too high. The clock period would then be too short, en would not have enough time to be computed, stabilize and propagate to your shift register before the next rising edge of the clock and anything could happen (no shift at all, partial shift, metastabilities...)
This is a very common concern in digital design: you cannot operate at an arbitrarily high clock frequency. If you could you would clock your own computer at yotta-Hz or even more, instead of giga-Hz, and everything would become instantaneous. It would be nice but it is not how the real world works.
In a digital design you always have what is called a critical path. It is a particular chain of logic gates between a set of source registers and a destination register, along which the propagation delay of electrical signals is the largest of the whole design.
Which path it is among all possible and the total delay along this path depend on your design's complexity (e.g. the number of bits of your counter), your target hardware technology (e.g. the FPGA of your prototyping board) and the operating conditions (temperature, voltage of power supply, speed-grade of your FPGA).
(Yes, it depends also on the temperature, reason why hard-core gamers cool down their computers with high performance cooling systems. This avoids the destruction of the silicon and allows to operate the computer at a higher clock frequency with more frames per second and a better user experience.)
The largest time it takes for the signals to travel from the source clock-edge to the arrival at destination, augmented by a small security margin called the setup time of the destination register, is the smallest clock period (highest clock frequency) at which you can run your design. As long as you don't exceed this limit your system works as expected.
Hardware design tool chains usually comprise a Static Timing Analyzer (STA) that tells you what this maximum clock frequency is for your design, your target, and your operating conditions. If it tells you 500 MHz and you need only 350 MHz, everything is fine (you could however investigate and see if you could modify your design, save some hardware, and still run at 350 MHz).
But if you need 650 MHz it is time to roll up your sleeves, look at the critical path (the STA will also show the path), understand it and rework your design to speed it up (e.g. pipeline long computations, use carry look ahead adders instead of carry ripple...) Note that, usually, when you encounter timing closure problems you do not consider only one critical path but the set of all paths that exceed your time budget because you want to eliminate them all, not just the worst. This is why the STA gives you not only the worst critical path but a list of critical paths, in decreasing order of severity.

VHDL - converting from level sampling to edge triggered - an intuitive explanation?

I have the following code (a primitive "RS-232 signalling" transmitter)...
LIBRARY ieee;
USE ieee.std_logic_1164.all;
entity SerialTX is
port(
baud_clk : in std_logic;
data : in std_logic_vector(7 downto 0);
send : in std_logic;
serial_out : out std_logic := '0';
busy : out std_logic := '0'
);
end entity;
----------------------------------------
architecture behavioural of SerialTX is
constant IDLE_BITS : std_logic_vector(10 downto 0) := "00000000001";
signal shifter : std_logic_vector(10 downto 0) := IDLE_BITS;
signal shift : std_logic := '0';
signal internal_busy : std_logic := '0';
begin
-------- ALWAYS HAPPENING --------
serial_out <= shifter(0);
busy <= internal_busy;
internal_busy <= '1' when (shifter /= IDLE_BITS) else '0';
----------------------------------
shifting_handler:
process(baud_clk) is
begin
if rising_edge(baud_clk) then
if (send = '1') and (shifter = IDLE_BITS) then
shifter <= "11" & data & '0';
elsif (shifter /= IDLE_BITS) then
shifter <= '0' & shifter(10 downto 1); -- shifter >>= 1;
end if;
end if;
end process;
end architecture behavioural;
... it works well (in simulation) but has a limitation. The send signal (that causes a transmission to begin) has to be a '1' level for longer than at least one full cycle of the baud_clk in order for the transmitter to see it reliably.
I have been trying to find a way to convert this code so that it responds to the rising edge of the send signal instead of testing its level at the rising edge of baud_clk. I want to be able to respond to a send pulse less than 100ns in duration even when the baud_clk is running at a much slower rate (115200 hz for instance).
I've tried (naively) altering the process thus...
shifting_handler:
process(baud_clk) is
begin
if rising_edge(baud_clk) then
if (shifter /= IDLE_BITS) then
shifter <= '0' & shifter(10 downto 1); -- shifter >>= 1;
end if;
elsif rising_edge(send) and (shifter = IDLE_BITS) then
shifter <= "11" & data & '0';
end if;
end process;
Here I was hoping to change the logic to test for a rising edge on send when there isn't a rising edge on baud_clk.
I know that this is not a valid approach to the problem (the synthesizer moans of course) but I was hoping that someone could explain in simple terms why this cannot be done. What would happen if it was possible to use two edge detectors in a process? There is a concept here I cannot grasp and I always seem to end up writing the code in the same way and producing this problem. I'm fighting hard against years of ingrained software programming habits, which doesn't help much!
It sounds like send is asynchronous with respect to baud_clk. You therefore need to perform some form of clock domain crossing (CDC) in order to correctly implement your design, otherwise you will have a design that cannot pass timing and has the potential to not function correctly. CDC is a standard term that you should be able to find more information about in other questions, and elsewhere.
As you have found, you cannot have a design realised in real hardware if it has a process sensitive to edges on two different signals. There's no one 'right' way to do what you want, but here is one example that uses a simple 'toggle' CDC. This is very simple, but note that the design could miss sending a byte if one send request arrives before a previous byte has been transmitted. There will also be some delay introduced between assertion of the send signal, and the transmission starting. It's not clear if these issues matter in your system.
Create another process sensitive to send:
-- The initial state doesn't matter, but we want the design to work in simulation
signal send_toggle : std_logic := '0';
process(send)
begin
if (rising_edge(send)) then
send_toggle <= not send_toggle;
end if;
end process;
Now another process to synchronize this to the baud_clk domain. Use two cascaded registers to produce a design that is largely immune to any metastability (this is another standard term that you can look up) that can result from sampling a signal generated from a different clock domain:
signal send_toggle_r1 : std_logic;
signal send_toggle_r2 : std_logic;
process(baud_clk)
begin
if (rising_edge(baud_clk)) then
send_toggle_r1 <= send_toggle;
send_toggle_r2 <= send_toggle_r1;
end if;
end process;
The above is a very standard circuit block that you can use in many single-bit CDC scenarios.
Your transmit process can then register the send_toggle_r2 signal in order to look for a transition, in order to determine whether it should start sending. This signal is in the correct clock domain:
signal send_toggle_r3 : std_logic;
process(baud_clk) is
begin
if rising_edge(baud_clk) then
send_toggle_r3 <= send_toggle_r2;
if ((send_toggle_r3 /= send_toggle_r2) and (shifter = IDLE_BITS)) then
shifter <= "11" & data & '0';
elsif (shifter /= IDLE_BITS) then
shifter <= '0' & shifter(10 downto 1); -- shifter >>= 1;
end if;
end if;
end process;
Lastly, you will need to implement timing constraints to tell your tool chain not to worry about timing of the send_toggle_r1 register.
You might spot that if you are targeting hardware where the initial states of registers are random, you might get an erroneous byte transmission after the first few baud_clk cycles. To prevent this, you might choose to hold your baud_clk process in reset for some clock cycles after start up, but as I don't know if this is relevant for you, I won't detail this part.
This whole answer addresses your question directly, but my personal approach would be to use whatever higher-rate clock is generating your send signal to drive the entire design. The serial transmission would then in fact use the higher rate clock, with shifting enabled by a CDC > edge detector chain driven from the baud_clk. The bit timing would not be absolutely perfect, but this should not matter for a standard 'UART' scenario.

Alternative method for creating low clock frequencies in VHDL

In the past I asked a question about resets, and how to divide a high clock frequency down to a series of lower clock square wave frequencies, where each output is a harmonic of one another e.g. the first output is 10 Hz, second is 20 Hz etc.
I received several really helpful answers recommending what appears to be the convention of using a clock enable pin to create lower frequencies.
An alternative since occurred to me; using a n bit number that is constantly incremented, and taking the last x bits of the number as the clock ouputs, where x is the number of outputs.
It works in synthesis for me - but I'm curious to know - as I've never seen it mentioned anywhere online or on SO, am I missing something that means its actually a terrible idea and I'm simply creating problems for later?
I'm aware that the limitations on this are that I can only produce frequencies that are the input frequency divided by a power of 2, and so most of the time it will only approximate the desired output frequency (but will still be of the right order). Is this limitation the only reason it isn't recommended?
Thanks very much!
David
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
library UNISIM;
use UNISIM.VComponents.all;
use IEEE.math_real.all;
ENTITY CLK_DIVIDER IS
GENERIC(INPUT_FREQ : INTEGER; --Can only divide the input frequency by a power a of 2
OUT1_FREQ : INTEGER
);
PORT(SYSCLK : IN STD_LOGIC;
RESET_N : IN STD_LOGIC;
OUT1 : OUT STD_LOGIC; --Actual divider is 2^(ceiling[log2(input/freq)])
OUT2 : OUT STD_LOGIC); --Actual output is input over value above
END CLK_DIVIDER;
architecture Behavioral of Clk_Divider is
constant divider : integer := INPUT_FREQ / OUT1_FREQ;
constant counter_bits : integer := integer(ceil(log2(real(divider))));
signal counter : unsigned(counter_bits - 1 downto 0) := (others => '0');
begin
proc : process(SYSCLK)
begin
if rising_edge(SYSCLK) then
counter <= counter + 1;
if RESET_N = '0' then
counter <= (others => '0');
end if;
end if;
end process;
OUT1 <= counter(counter'length - 1);
OUT2 <= not counter(counter'length - 2);
end Behavioral;
Functionally the two outputs OUT1 and OUT2 can be used as clocks, but that method of making clocks does not scale and is likely to cause problems in the implementation, so it is a bad habit. However, it is of course important to understand why this is so.
The reason it does not scale, is that every signal used as clock in a FPGA is to be distributed through a special clock net, where the latency and skew is well-defined, so all flip-flops and memories on each clock are updated synchronously. The number of such clock nets is very limited, usually in the range of 10 to 40 in a FPGA device, and some restrictions on use and location makes it typically even more critical to plan the use of clock nets. So it is typically required to reserve clock nets for only real asynchronous clocks, where there is no alternative than to use a clock net.
The reason it is likely to cause problems, is that clocks created based on bits in a counter have no guaranteed timing relation. So if it is required to moved data between these clock domains, it requires additional constrains for synchronization, in order to be sure that the Clock Domain Crossing (CDC) is handled correctly. This is done through constrains for synthesis and/or Static Timing Analysis (STA), and is usually a little tricky to get right, so using a design methodology that simplifies STA is habit that saves design time.
So in designs where it is possible to use a common clock, and then generate synchronous clock enable signals, this should be the preferred approach. For the specific design above, a clock enable can be generated simply by detecting the '0' to '1' transition of the relevant counter bit, and then assert the clock enable in the single cycle where the transition is detected. Then a single clock net can be used, together with 2 clock enables like CE1 and CE2, and no special STA constrains are required.
Morten already pointed out the theory in his answer.
With the aid of two examples, I will demonstrate the problems you encounter when using a generated clock instead of clock enables.
Clock Distribution
At first, one must take care that a clock arrives at (almost) the same time at all destination flip-flops. Otherwise, even a simple shift register with 2 stages like this one would fail:
process(clk_gen)
begin
if rising_edge(clk_gen) then
tmp <= d;
q <= tmp;
end if;
end if;
The intended behavior of this example is that q gets the value of d after two rising edges of the generated clock clock_gen.
If the generated clock is not buffered by a global clock buffer, then the delay will be different for each destination flip-flop because it will be routed via the general-purpose routing.
Thus, the behavior of the shift register can be described as follows with some explicit delays:
library ieee;
use ieee.std_logic_1164.all;
entity shift_reg is
port (
clk_gen : in std_logic;
d : in std_logic;
q : out std_logic);
end shift_reg;
architecture rtl of shift_reg is
signal ff_0_q : std_logic := '0'; -- output of flip-flop 0
signal ff_1_q : std_logic := '0'; -- output of flip-flop 1
signal ff_0_c : std_logic; -- clock input of flip-flop 0
signal ff_1_c : std_logic; -- clock input of flip-flop 1
begin -- rtl
-- different clock delay per flip-flop if general-purpose routing is used
ff_0_c <= transport clk_gen after 500 ps;
ff_1_c <= transport clk_gen after 1000 ps;
-- two closely packed registers with clock-to-output delay of 100 ps
ff_0_q <= d after 100 ps when rising_edge(ff_0_c);
ff_1_q <= ff_0_q after 100 ps when rising_edge(ff_1_c);
q <= ff_1_q;
end rtl;
The following test bench just feeds in a '1' at input d, so that, q should be '0' after 1 clock edge an '1' after two clock edges.
library ieee;
use ieee.std_logic_1164.all;
entity shift_reg_tb is
end shift_reg_tb;
architecture sim of shift_reg_tb is
signal clk_gen : std_logic;
signal d : std_logic;
signal q : std_logic;
begin -- sim
DUT: entity work.shift_reg port map (clk_gen => clk_gen, d => d, q => q);
WaveGen_Proc: process
begin
-- Note: registers inside DUT are initialized to zero
d <= '1'; -- shift in '1'
clk_gen <= '0';
wait for 2 ns;
clk_gen <= '1'; -- just one rising edge
wait for 2 ns;
assert q = '0' report "Wrong output" severity error;
wait;
end process WaveGen_Proc;
end sim;
But, the simulation waveform shows that q already gets '1' after the first clock edge (at 3.1 ns) which is not the intended behavior.
That's because FF 1 already sees the new value from FF 0 when the clock arrives there.
This problem can be solved by distributing the generated clock via a clock tree which has a low skew.
To access one of the clock trees of the FPGA, one must use a global clock buffer, e.g., BUFG on Xilinx FPGAs.
Data Handover
The second problem is the handover of multi-bit signals between two clock domains.
Let's assume we have 2 registers with 2 bits each. Register 0 is clocked by the original clock and register 1 is clocked by the generated clock.
The generated clock is already distributed by clock tree.
Register 1 just samples the output from register 0.
But now, the different wire delays for both register bits in between play an important role. These have been modeled explicitly in the following design:
library ieee;
use ieee.std_logic_1164.all;
library unisim;
use unisim.vcomponents.all;
entity handover is
port (
clk_orig : in std_logic; -- original clock
d : in std_logic_vector(1 downto 0); -- data input
q : out std_logic_vector(1 downto 0)); -- data output
end handover;
architecture rtl of handover is
signal div_q : std_logic := '0'; -- output of clock divider
signal bufg_o : std_logic := '0'; -- output of clock buffer
signal clk_gen : std_logic; -- generated clock
signal reg_0_q : std_logic_vector(1 downto 0) := "00"; -- output of register 0
signal reg_1_d : std_logic_vector(1 downto 0); -- data input of register 1
signal reg_1_q : std_logic_vector(1 downto 0) := "00"; -- output of register 1
begin -- rtl
-- Generate a clock by dividing the original clock by 2.
-- The 100 ps delay is the clock-to-output time of the flip-flop.
div_q <= not div_q after 100 ps when rising_edge(clk_orig);
-- Add global clock-buffer as well as mimic some delay.
-- Clock arrives at (almost) same time on all destination flip-flops.
clk_gen_bufg : BUFG port map (I => div_q, O => bufg_o);
clk_gen <= transport bufg_o after 1000 ps;
-- Sample data input with original clock
reg_0_q <= d after 100 ps when rising_edge(clk_orig);
-- Different wire delays between register 0 and register 1 for each bit
reg_1_d(0) <= transport reg_0_q(0) after 500 ps;
reg_1_d(1) <= transport reg_0_q(1) after 1500 ps;
-- All flip-flops of register 1 are clocked at the same time due to clock buffer.
reg_1_q <= reg_1_d after 100 ps when rising_edge(clk_gen);
q <= reg_1_q;
end rtl;
Now, just feed in the new data value "11" via register 0 with this testbench:
library ieee;
use ieee.std_logic_1164.all;
entity handover_tb is
end handover_tb;
architecture sim of handover_tb is
signal clk_orig : std_logic := '0';
signal d : std_logic_vector(1 downto 0);
signal q : std_logic_vector(1 downto 0);
begin -- sim
DUT: entity work.handover port map (clk_orig => clk_orig, d => d, q => q);
WaveGen_Proc: process
begin
-- Note: registers inside DUT are initialized to zero
d <= "11";
clk_orig <= '0';
for i in 0 to 7 loop -- 4 clock periods
wait for 2 ns;
clk_orig <= not clk_orig;
end loop; -- i
wait;
end process WaveGen_Proc;
end sim;
As can be seen in the following simulation output, the output of register 1 toggles to an intermediate value of "01" at 3.1 ns first because the input of register 1 (reg_1_d) is still changing when the rising edge of the generated clock occurs.
The intermediate value was not intended and can lead to undesired behavior. The correct value is seen not until another rising edge of the generated clock.
To solve this issue, one can use:
special codes, where only one bit flips at a time, e.g., gray code, or
cross-clock FIFOs, or
handshaking with the help of single control bits.

PRBS Generator module in VHDL

Here i am posting a snapshot of prbs
My code for prbs module is
-- Module Name: prbs - Behavioral
-- Project Name: modulator
-- Description:
--To make it of N bit replace existing value of N with desired value of N
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity prbs is
Port ( pclock : in STD_LOGIC;
preset : IN std_logic := '0';
prbsout : out STD_LOGIC);
end prbs;
architecture Behavioral of prbs is
COMPONENT dff is
PORT(
dclock : IN std_logic;
dreset : IN std_logic;
din : IN std_logic ;
dout : OUT std_logic
);
END COMPONENT;
signal dintern : std_logic_vector (4 downto 1); --Change value of N to change size of shift register
signal feedback : std_logic := '0';
begin
instdff : dff port map (pclock , preset , feedback , dintern(1));
genreg : for i in 2 to 4 generate --Change Value of N Here to generate that many instance of d flip flop
begin
instdff : dff port map ( pclock , preset , dintern(i-1) , dintern(i));
end generate genreg;
main : process(pclock)
begin
if pclock'event and pclock = '1' then
if preset = '0' then
if dintern /= "0" then
feedback <= dintern(1) xor dintern(3); -- For N equals four;
--feedback <= dintern(4) xor dintern(5) xor dintern(6) xor dintern(8); -- For N equals eight;
--feedback <= dintern(11) xor dintern(13) xor dintern(14) xor dintern(16); -- For N equals sixteen;
--feedback <= dintern(1) xor dintern(2) xor dintern(22) xor dintern(32); -- For N equals thirty two
else
feedback <= '1';
end if;
end if;
end if;
end process main;
prbsout <= dintern(4) ; --Change Value of N Here to take output to top entity
end Behavioral;
In it i am instantiating a d flip flop module
d ff module code
----------------------------------------------------------------------------------
-- Module Name: dff - Behavioral
-- Project Name:
-- Description:
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity dff is
Port ( dclock : in STD_LOGIC ;
dreset : in STD_LOGIC ;
din : in STD_LOGIC;
dout : out STD_LOGIC);
end dff;
architecture Behavioral of dff is
begin
process(dclock)
begin
if dclock'event and dclock = '1' then
if dreset = '0' then
dout <= din;
else
dout <= '1';
end if;
end if;
end process;
end Behavioral;
But i am not getting desired output.
In top level entity i am getting always 1 at prbsout signal.
When i try to simulate then prbsout signal becomes undefined.
What i am missing?
The prbs module reset at preset does not apply to the feedback signal,
probably because the intention was to use the initial value of 0 assigned in
the declaration of the feedback signal. However, since the dff modules
uses synchronous reset, and the dintern signal will be undriven U at start,
and since then next value for feedback is calculated using dintern(1) in an
xor, the feedback will get undefined right after start, and can't recover,
even if a lengthy reset is applied. See waveform from ModelSim below.
An immediate fix for the reset issue is to apply reset for feedback also in
the main process:
...
else -- preset /= '0'
feedback <= '0';
...
Now at least reset works, and can make the prbs generate a sequence. See
waveform below.
Just a few additional comments to the code, while at it:
Instead of dclock'event and dclock = '1' you can use rising_edge(dclock),
which I think must reader will find easier to understand, and it is less
error prone
For most tools, it is unnecessary to make a separte module just for a
flip-flop, like the dff module, since the tools can infer flip-flop
directly from the process even when advanced expressions are used for signal
assignments are used.
But, I don't think the output is what you actually want. Based on your
design, and the selected taps for the LFSR, it looks like you want to generate
maximum length LFSR sequences, that is sequences with a length of 2 ** N - 1
for a LFSR register being N bits long.
The principles of LFSR and the taps to for feedback generation is described
on Wikipedia: Linear feedback shift
register.
However, since the feedback signal is generated as a flip-flop, it becomes
part of the LSFR shift register, thus adds a bit to the length, but the tap
values are based on the dintern part of the LFSR only, the taps will be
wrong. Selecting the wrong bits will result in a LFSR sequence that is less
than then maximum sequence, and you can also see that in the simulation output,
where the sequence is only 6 cycles long, even through the dintern(4 downto
1) + feedback together makes a 5 bit register.
So a more thorough rewrite of the prbs module is required, if what you want
is to generate maximum length PRBS sequences, and below is an example of how
the prbs module can be written:
library ieee;
use ieee.std_logic_1164.all;
entity prbs_new is
generic(
BITS : natural);
port(
clk_i : in std_logic;
rst_i : in std_logic;
prbs_o : out std_logic);
end entity;
library ieee;
use ieee.numeric_std.all;
architecture syn of prbs_new is
signal lfsr : std_logic_vector(BITS downto 1); -- Flip-flops with LFSR state
function feedback(slv : std_logic_vector) return std_logic is -- For maximum length LFSR generation
begin
case slv'length is
when 3 => return slv( 3) xor slv( 2);
when 4 => return slv( 4) xor slv( 3);
when 8 => return slv( 8) xor slv( 6) xor slv( 5) xor slv(4);
when 16 => return slv(16) xor slv(15) xor slv(13) xor slv(4);
when 32 => return slv(32) xor slv(22) xor slv( 2) xor slv(1);
when others => report "feedback function not defined for slv'lenght as " & integer'image(slv'length)
severity FAILURE;
return 'X';
end case;
end function;
begin
process (clk_i, rst_i) is
begin
if rising_edge(clk_i) then
if unsigned(lfsr) /= 0 then
lfsr <= lfsr(lfsr'left - 1 downto lfsr'right) & feedback(lfsr); -- Left shift with feedback in
end if;
end if;
if rst_i = '1' then -- Asynchronous reset
lfsr <= std_logic_vector(to_unsigned(1, BITS)); -- Reset assigns 1 to lfsr signal
end if;
end process;
prbs_o <= lfsr(BITS); -- Drive output
end architecture;
Comments to ´prbs_new´ module
Generic BITS is added so diffrent LFSR length can be made from the same code.
Ports are named with "_i" for inputs and "_o" for outputs, since this naming
convension is very useful when tracing signals at a toplevel with multiple
modules.
The VHDL standard package ieee.numeric_std is used instead of
the non-standard package ieee.std_logic_unsigned.
Asynchronous reset is used instead of synchronous reset and initial value in
the signal declaration.
The advantage over synchronous reset is that asynchronous reset typical
applies to a dedicated input on the flip-flops in FPGA and ASIC
technology, and not in the potentially timing critical data path, whereby
the design can be faster.
The advantage over initial value in the signal declation is that FPGA and
ASIC technologies are more likely to be able to implement this; there are
cases where initial values are not supported. Also functional reset
makes restart possible in a test bench without having to reload the
simulator.
There is no check for an all-0 value of the lfsr signal in the process,
since the lfsr will never get an all-0 value if proper maximum length taps
are used, and the lfsr signal is reset to a non-0 value.
It looks like you are never setting your internal state (dintern) to a known value. Since all subsequent states are calculated from your initial dintern value, they are unknown as well. Try assigning an initial state to dintern, or fixing your preset code to actually do something when preset is high (and then assert it at the start of your testbench).

Binary serial adder - VHDL

I'm trying to design a 32bit binary serial adder in VHDL, using a structural description. The adder should make use of a full adder and a d-latch. The way I see it is:
Full adder:
architecture Behavioral of FullAdder is
begin
s <= (x xor y) xor cin;
cout <= (x and y) or (y and cin) or (x and cin);
end Behavioral;
D-Latch:
architecture Behavioral of dLatch is
begin
state: process(clk)
begin
if(clk'event and clk = '1') then
q <= d;
end if;
end process;
end Behavioral;
Serial adder:
add: process ( clk )
variable count : integer range 0 to 31;
variable aux : STD_LOGIC;
variable aux2 : STD_LOGIC;
begin
if(clk'event and clk = '1') then
fa: FullAdder port map(x(count), y(count), aux, s(count), aux2);
dl: dLatch port map(clock, aux2, aux);
count := count + 1;
end if;
end process;
However, it doesn't seem to work.
Also, what would be the simplest way to pipeline the serial adder?
"It doesn't seem to work" is pretty general, but one problem I see is that you are trying to instantiate the component fa: FullAdder within a process. Think about what component instantiation means in hardware, and you will realize that it makes no sense to instantiate the module on the rising_edge of clk...
Move the instantiation out of the process, and it should at least remove the syntax error you should be seeing ("Illegal sequential statement." in ModelSim).
For pipelining the serial adder, the best way is to connect the adders and d flip-flops one after the other. So, you would have the cout of the first adder be the input of a flip-flop. The output of that flip-flop will be the cin of the next adder and so on. Be careful though, because you will also have to pipeline the s of each adder, as well as each bit of the input, by essentially putting several d flip-flops in a row to copy them through the various pipeline stages.

Resources