I am new to camus and I want to try and use it we my kafka 0.8
so far i downloaded the source created 2 queue like the example expect
configured the job config file (see below)
and tried to run it on my machine(details below) with this command
$JAVA_HOME/bin/java -cp camus-example-0.1.0-SNAPSHOT.jar com.linkedin.camus.etl.kafka.CamusJob -P /root/Desktop/camus-workspace/camus-master/camus-example/target/camus.properties
the jar contains all the dependencies like the shade file
and I am getting this error:
[EtlInputFormat] - Discrading topic : TestQueue
[EtlInputFormat] - Discrading topic : test
[EtlInputFormat] - Discrading topic : DummyLog2
[EtlInputFormat] - Discrading topic : test3
[EtlInputFormat] - Discrading topic : TwitterQueue
[EtlInputFormat] - Discrading topic : test2
[EtlInputFormat] - Discarding topic (Decoder generation failed) : DummyLog
[CodecPool] - Got brand-new compressor
[JobClient] - Running job: job_local_0001
[JobClient] - map 0% reduce 0%
[JobClient] - Job complete: job_local_0001
[JobClient] - Counters: 0
[CamusJob] - Job finished
when i tried to run it with my intellij-idea editor
i got the some error but found the reason for the error
java.lang.RuntimeException: java.lang.ClassNotFoundException: com.linkedin.batch.etl.kafka.coders.LatestSchemaKafkaAvroMessageDecoder
can some explain to me what i am doing wrong ?
camus config file
# Needed Camus properties, more cleanup to come
# final top-level data output directory, sub-directory will be dynamically created for each topic pulled
etl.destination.path=/root/Desktop/camus-workspace/camus-master/camus-example/target/1
# HDFS location where you want to keep execution files, i.e. offsets, error logs, and count files
etl.execution.base.path=/root/Desktop/camus-workspace/camus-master/camus-example/target/2
# where completed Camus job output directories are kept, usually a sub-dir in the base.path
etl.execution.history.path=/root/Desktop/camus-workspace/camus-master/camus-example/target3
# Kafka-0.8 handles all zookeeper calls
#zookeeper.hosts=localhost:2181
#zookeeper.broker.topics=/brokers/topics
#zookeeper.broker.nodes=/brokers/ids
# Concrete implementation of the Encoder class to use (used by Kafka Audit, and thus optional for now)
#camus.message.encoder.class=com.linkedin.batch.etl.kafka.coders.DummyKafkaMessageEncoder
# Concrete implementation of the Decoder class to use
camus.message.decoder.class=com.linkedin.batch.etl.kafka.coders.LatestSchemaKafkaAvroMessageDecoder
# Used by avro-based Decoders to use as their Schema Registry
kafka.message.coder.schema.registry.class=com.linkedin.camus.example.DummySchemaRegistry
# Used by the committer to arrange .avro files into a partitioned scheme. This will be the default partitioner for all
# topic that do not have a partitioner specified
#etl.partitioner.class=com.linkedin.camus.etl.kafka.coders.DefaultPartitioner
# Partitioners can also be set on a per-topic basis
#etl.partitioner.class.<topic-name>=com.your.custom.CustomPartitioner
# all files in this dir will be added to the distributed cache and placed on the classpath for hadoop tasks
# hdfs.default.classpath.dir=/root/Desktop/camus-workspace/camus-master/camus-example/target
# max hadoop tasks to use, each task can pull multiple topic partitions
mapred.map.tasks=30
# max historical time that will be pulled from each partition based on event timestamp
kafka.max.pull.hrs=1
# events with a timestamp older than this will be discarded.
kafka.max.historical.days=3
# Max minutes for each mapper to pull messages (-1 means no limit)
kafka.max.pull.minutes.per.task=-1
# if whitelist has values, only whitelisted topic are pulled. nothing on the blacklist is pulled
kafka.blacklist.topics=
kafka.whitelist.topics=DummyLog
log4j.configuration=true
# Name of the client as seen by kafka
kafka.client.name=camus
# Fetch Request Parameters
kafka.fetch.buffer.size=
kafka.fetch.request.correlationid=
kafka.fetch.request.max.wait=
kafka.fetch.request.min.bytes=
# Connection parameters.
kafka.brokers=localhost:9092
kafka.timeout.value=
#Stops the mapper from getting inundated with Decoder exceptions for the same topic
#Default value is set to 10
max.decoder.exceptions.to.print=5
#Controls the submitting of counts to Kafka
#Default value set to true
post.tracking.counts.to.kafka=true
log4j.configuration=true
# everything below this point can be ignored for the time being, will provide more documentation down the road
##########################
etl.run.tracking.post=false
kafka.monitor.tier=
etl.counts.path=
kafka.monitor.time.granularity=10
etl.hourly=hourly
etl.daily=daily
etl.ignore.schema.errors=false
# configure output compression for deflate or snappy. Defaults to deflate
etl.output.codec=deflate
etl.deflate.level=6
#etl.output.codec=snappy
etl.default.timezone=America/Los_Angeles
etl.output.file.time.partition.mins=60
etl.keep.count.files=false
etl.execution.history.max.of.quota=.8
mapred.output.compress=true
mapred.map.max.attempts=1
kafka.client.buffer.size=20971520
kafka.client.so.timeout=60000
#zookeeper.session.timeout=
#zookeeper.connection.timeout=
machine details:
hortonworks - hdp 2.0.0.6
with kafka 0.8 beta 1
There is a mistake in package name.
Change
camus.message.decoder.class=com.linkedin.batch.etl.kafka.coders.LatestSchemaKafkaAvroMessageDecoder
to
camus.message.decoder.class=com.linkedin.camus.etl.kafka.coders.LatestSchemaKafkaAvroMessageDecoder
Also you need to specify some Kafka-related properties or comment it (this way Camus will use default values):
# Fetch Request Parameters
# kafka.fetch.buffer.size=
# kafka.fetch.request.correlationid=
# kafka.fetch.request.max.wait=
# kafka.fetch.request.min.bytes=
# Connection parameters.
kafka.brokers=localhost:9092
# kafka.timeout.value=
Related
I facing the issue of failed to communicate with peer when loading data using Round Robin load balancer from the queue in Apache-NiFi cluster.
I setup 3 node in the cluster and below is one of the nifi.properties setting from one of the node.
From the screenshot attached below, I have the GetFile processor which will read some text file in multiple lines of CSV format. So, when there are several files in the processor, it will put to the queue once read it. In the queue, I use round robin load balancer. So, when the started to load data into the queue, the error occur.
####################
# State Management #
####################
nifi.state.management.configuration.file=./conf/state-management.xml
# The ID of the local state provider
nifi.state.management.provider.local=local-provider
# The ID of the cluster-wide state provider. This will be ignored if NiFi is not clustered but must be populated if running in a cluster.
nifi.state.management.provider.cluster=zk-provider
# Specifies whether or not this instance of NiFi should run an embedded ZooKeeper server
nifi.state.management.embedded.zookeeper.start=true
# Properties file that provides the ZooKeeper properties to use if <nifi.state.management.embedded.zookeeper.start> is set to true
nifi.state.management.embedded.zookeeper.properties=./conf/zookeeper.properties
# H2 Settings
nifi.database.directory=./database_repository
nifi.h2.url.append=;LOCK_TIMEOUT=25000;WRITE_DELAY=0;AUTO_SERVER=FALSE
# FlowFile Repository
nifi.flowfile.repository.implementation=org.apache.nifi.controller.repository.WriteAheadFlowFileRepository
nifi.flowfile.repository.wal.implementation=org.apache.nifi.wali.SequentialAccessWriteAheadLog
nifi.flowfile.repository.directory=./flowfile_repository
nifi.flowfile.repository.checkpoint.interval=20 secs
nifi.flowfile.repository.always.sync=false
nifi.flowfile.repository.encryption.key.provider.implementation=
nifi.flowfile.repository.encryption.key.provider.location=
nifi.flowfile.repository.encryption.key.provider.password=
nifi.flowfile.repository.encryption.key.id=
nifi.flowfile.repository.encryption.key=
nifi.flowfile.repository.retain.orphaned.flowfiles=true
nifi.swap.manager.implementation=org.apache.nifi.controller.FileSystemSwapManager
nifi.queue.swap.threshold=20000
# Content Repository
nifi.content.repository.implementation=org.apache.nifi.controller.repository.FileSystemRepository
nifi.content.claim.max.appendable.size=1 MB
nifi.content.repository.directory.default=./content_repository
nifi.content.repository.archive.max.retention.period=7 days
nifi.content.repository.archive.max.usage.percentage=50%
nifi.content.repository.archive.enabled=true
nifi.content.repository.always.sync=false
nifi.content.viewer.url=../nifi-content-viewer/
nifi.content.repository.encryption.key.provider.implementation=
nifi.content.repository.encryption.key.provider.location=
nifi.content.repository.encryption.key.provider.password=
nifi.content.repository.encryption.key.id=
nifi.content.repository.encryption.key=
# Provenance Repository Properties
nifi.provenance.repository.implementation=org.apache.nifi.provenance.WriteAheadProvenanceRepository
nifi.provenance.repository.encryption.key.provider.implementation=
nifi.provenance.repository.encryption.key.provider.location=
nifi.provenance.repository.encryption.key.provider.password=
nifi.provenance.repository.encryption.key.id=
nifi.provenance.repository.encryption.key=
# Persistent Provenance Repository Properties
nifi.provenance.repository.directory.default=./provenance_repository
nifi.provenance.repository.max.storage.time=30 days
nifi.provenance.repository.max.storage.size=10 GB
nifi.provenance.repository.rollover.time=10 mins
nifi.provenance.repository.rollover.size=100 MB
nifi.provenance.repository.query.threads=2
nifi.provenance.repository.index.threads=2
nifi.provenance.repository.compress.on.rollover=true
nifi.provenance.repository.always.sync=false
# Comma-separated list of fields. Fields that are not indexed will not be searchable. Valid fields are:
# EventType, FlowFileUUID, Filename, TransitURI, ProcessorID, AlternateIdentifierURI, Relationship, Details
nifi.provenance.repository.indexed.fields=EventType, FlowFileUUID, Filename, ProcessorID, Relationship
# FlowFile Attributes that should be indexed and made searchable. Some examples to consider are filename, uuid, mime.type
nifi.provenance.repository.indexed.attributes=
# Large values for the shard size will result in more Java heap usage when searching the Provenance Repository
# but should provide better performance
nifi.provenance.repository.index.shard.size=500 MB
# Indicates the maximum length that a FlowFile attribute can be when retrieving a Provenance Event from
# the repository. If the length of any attribute exceeds this value, it will be truncated when the event is retrieved.
nifi.provenance.repository.max.attribute.length=65536
nifi.provenance.repository.concurrent.merge.threads=2
# Volatile Provenance Respository Properties
nifi.provenance.repository.buffer.size=100000
# Component and Node Status History Repository
nifi.components.status.repository.implementation=org.apache.nifi.controller.status.history.VolatileComponentStatusRepository
# Volatile Status History Repository Properties
nifi.components.status.repository.buffer.size=1440
nifi.components.status.snapshot.frequency=1 min
# QuestDB Status History Repository Properties
nifi.status.repository.questdb.persist.node.days=14
nifi.status.repository.questdb.persist.component.days=3
nifi.status.repository.questdb.persist.location=./status_repository
# Site to Site properties
nifi.remote.input.host=node1
nifi.remote.input.secure=false
nifi.remote.input.socket.port=10001
nifi.remote.input.http.enabled=true
nifi.remote.input.http.transaction.ttl=30 sec
nifi.remote.contents.cache.expiration=30 secs
# web properties #
#############################################
# For security, NiFi will present the UI on 127.0.0.1 and only be accessible through this loopback interface.
# Be aware that changing these properties may affect how your instance can be accessed without any restriction.
# We recommend configuring HTTPS instead. The administrators guide provides instructions on how to do this.
nifi.web.http.host=node1
nifi.web.http.port=8081
nifi.web.http.network.interface.default=
#############################################
nifi.web.https.host=
nifi.web.https.port=
nifi.web.https.network.interface.default=
nifi.web.jetty.working.directory=./work/jetty
nifi.web.jetty.threads=200
nifi.web.max.header.size=16 KB
nifi.web.proxy.context.path=
nifi.web.proxy.host=
nifi.web.max.content.size=
nifi.web.max.requests.per.second=30000
nifi.web.request.timeout=60 secs
nifi.web.request.ip.whitelist=
nifi.web.should.send.server.version=true
# Include or Exclude TLS Cipher Suites for HTTPS
nifi.web.https.ciphersuites.include=
nifi.web.https.ciphersuites.exclude=
# security properties #
nifi.sensitive.props.key=sf4eCVtTmnwRfMd5LarMMkKyTONuLvgE
nifi.sensitive.props.key.protected=
nifi.sensitive.props.algorithm=NIFI_PBKDF2_AES_GCM_256
nifi.sensitive.props.provider=BC
nifi.sensitive.props.additional.keys=
nifi.security.autoreload.enabled=false
nifi.security.autoreload.interval=10 secs
nifi.security.keystore=./conf/keystore.p12
nifi.security.keystoreType=PKCS12
nifi.security.keystorePasswd=df9e762b67b2c74eb1ea147be8d7ecf0
nifi.security.keyPasswd=df9e762b67b2c74eb1ea147be8d7ecf0
nifi.security.truststore=./conf/truststore.p12
nifi.security.truststoreType=PKCS12
nifi.security.truststorePasswd=6d115b1494e9dd5112c2d2dc0608bc85
nifi.security.user.authorizer=single-user-authorizer
nifi.security.allow.anonymous.authentication=false
nifi.security.user.login.identity.provider=single-user-provider
nifi.security.ocsp.responder.url=
nifi.security.ocsp.responder.certificate=
# OpenId Connect SSO Properties #
nifi.security.user.oidc.discovery.url=
nifi.security.user.oidc.connect.timeout=5 secs
nifi.security.user.oidc.read.timeout=5 secs
nifi.security.user.oidc.client.id=
nifi.security.user.oidc.client.secret=
nifi.security.user.oidc.preferred.jwsalgorithm=
nifi.security.user.oidc.additional.scopes=
nifi.security.user.oidc.claim.identifying.user=
nifi.security.user.oidc.fallback.claims.identifying.user=
# Apache Knox SSO Properties #
nifi.security.user.knox.url=
nifi.security.user.knox.publicKey=
nifi.security.user.knox.cookieName=hadoop-jwt
nifi.security.user.knox.audiences=
# SAML Properties #
nifi.security.user.saml.idp.metadata.url=
nifi.security.user.saml.sp.entity.id=
nifi.security.user.saml.identity.attribute.name=
nifi.security.user.saml.group.attribute.name=
nifi.security.user.saml.metadata.signing.enabled=false
nifi.security.user.saml.request.signing.enabled=false
nifi.security.user.saml.want.assertions.signed=true
nifi.security.user.saml.signature.algorithm=http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
nifi.security.user.saml.signature.digest.algorithm=http://www.w3.org/2001/04/xmlenc#sha256
nifi.security.user.saml.message.logging.enabled=false
nifi.security.user.saml.authentication.expiration=12 hours
nifi.security.user.saml.single.logout.enabled=false
nifi.security.user.saml.http.client.truststore.strategy=JDK
nifi.security.user.saml.http.client.connect.timeout=30 secs
nifi.security.user.saml.http.client.read.timeout=30 secs
# Identity Mapping Properties #
# These properties allow normalizing user identities such that identities coming from different identity providers
# (certificates, LDAP, Kerberos) can be treated the same internally in NiFi. The following example demonstrates normalizing
# DNs from certificates and principals from Kerberos into a common identity string:
#
# nifi.security.identity.mapping.pattern.dn=^CN=(.*?), OU=(.*?), O=(.*?), L=(.*?), ST=(.*?), C=(.*?)$
# nifi.security.identity.mapping.value.dn=$1#$2
# nifi.security.identity.mapping.transform.dn=NONE
# nifi.security.identity.mapping.pattern.kerb=^(.*?)/instance#(.*?)$
# nifi.security.identity.mapping.value.kerb=$1#$2
# nifi.security.identity.mapping.transform.kerb=UPPER
# Group Mapping Properties #
# These properties allow normalizing group names coming from external sources like LDAP. The following example
# lowercases any group name.
#
# nifi.security.group.mapping.pattern.anygroup=^(.*)$
# nifi.security.group.mapping.value.anygroup=$1
# nifi.security.group.mapping.transform.anygroup=LOWER
# cluster common properties (all nodes must have same values) #
nifi.cluster.protocol.heartbeat.interval=5 sec
nifi.cluster.protocol.heartbeat.missable.max=8
nifi.cluster.protocol.is.secure=false
# cluster node properties (only configure for cluster nodes) #
nifi.cluster.is.node=true
nifi.cluster.node.address=node1
nifi.cluster.node.protocol.port=9991
nifi.cluster.node.protocol.threads=10
nifi.cluster.node.protocol.max.threads=50
nifi.cluster.node.event.history.size=25
nifi.cluster.node.connection.timeout=60 sec
nifi.cluster.node.read.timeout=60 sec
nifi.cluster.node.max.concurrent.requests=100
nifi.cluster.firewall.file=
nifi.cluster.flow.election.max.wait.time=5 mins
nifi.cluster.flow.election.max.candidates=
# cluster load balancing properties #
nifi.cluster.load.balance.host=node1
nifi.cluster.load.balance.port=6342
nifi.cluster.load.balance.connections.per.node=2
nifi.cluster.load.balance.max.thread.count=8
nifi.cluster.load.balance.comms.timeout=30 sec
# zookeeper properties, used for cluster management #
nifi.zookeeper.connect.string=node1:2181,node2:2182,node3:2183
nifi.zookeeper.connect.timeout=10 secs
nifi.zookeeper.session.timeout=10 secs
nifi.zookeeper.root.node=/nifi
nifi.zookeeper.client.secure=false
nifi.zookeeper.security.keystore=
nifi.zookeeper.security.keystoreType=
nifi.zookeeper.security.keystorePasswd=
nifi.zookeeper.security.truststore=
nifi.zookeeper.security.truststoreType=
nifi.zookeeper.security.truststorePasswd=
# Zookeeper properties for the authentication scheme used when creating acls on znodes used for cluster management
# Values supported for nifi.zookeeper.auth.type are "default", which will apply world/anyone rights on znodes
# and "sasl" which will give rights to the sasl/kerberos identity used to authenticate the nifi node
# The identity is determined using the value in nifi.kerberos.service.principal and the removeHostFromPrincipal
# and removeRealmFromPrincipal values (which should align with the kerberos.removeHostFromPrincipal and kerberos.removeRealmFromPrincipal
# values configured on the zookeeper server).
nifi.zookeeper.auth.type=
nifi.zookeeper.kerberos.removeHostFromPrincipal=
nifi.zookeeper.kerberos.removeRealmFromPrincipal=
# kerberos #
nifi.kerberos.krb5.file=
# kerberos service principal #
nifi.kerberos.service.principal=
nifi.kerberos.service.keytab.location=
# kerberos spnego principal #
nifi.kerberos.spnego.principal=
nifi.kerberos.spnego.keytab.location=
nifi.kerberos.spnego.authentication.expiration=12 hours
# external properties files for variable registry
# supports a comma delimited list of file locations
nifi.variable.registry.properties=
# analytics properties #
nifi.analytics.predict.enabled=false
nifi.analytics.predict.interval=3 mins
nifi.analytics.query.interval=5 mins
nifi.analytics.connection.model.implementation=org.apache.nifi.controller.status.analytics.models.OrdinaryLeastSquares
nifi.analytics.connection.model.score.name=rSquared
nifi.analytics.connection.model.score.threshold=.90
# runtime monitoring properties
nifi.monitor.long.running.task.schedule=
nifi.monitor.long.running.task.threshold=
Hopefully someone can give some advise.
Thanks in advance.
We've been running Camus for about a year successfully to pull avro payloads from Kafka (ver 0.82) and store as .avro files in HDFS, using just a few Kafka topics. Recently, a new team within our company registered about 60 new topics in our pre-production environment and started sending data to these topics. The team made some mistakes when routing their data to kafka topics, that resulted in errors when Camus deserialized the payloads to avro for these topics.
The Camus job failed due to exceeding the 'failed other' error threshold. The resulting behavior in Camus after the failure was surprising, I wanted to check with other developers to see whether the behavior we observed is expected or whether we have some issue going on with our implementation.
We noticed this behavior when the Camus job failed due to exceeding the 'failed other' threshold:
1. All of the mapper tasks succeeded, and so the TaskAttempt was allowed to commit - this means that all of the data written by Camus was copied to the final HDFS location.
2. The CamusJob throws an exception when it computes the % error rate (this is following the mapper commit), which caused the job to fail
3. Because the job failed (I think), the Kafka offsets weren't advance
The problem we ran into with this behavior is that our Camus job is set to run every 5 minutes. So, every 5 minutes we saw that data was committed to HDFS, the job failed, and the Kafka offsets weren't updated - this meant that we wrote duplicated data until we noticed that our disks were filling up.
I wrote an integration test that confirms the result - it submits 10 good records to a topic, and 10 records that use an unexpected schema to the same topic, runs the Camus job with only that topic whitelisted, and we can see that 10 records are written to HDFS and the Kafka offsets aren't advanced. Below is a snippet of the logs from that test, as well as the properties we used while running the job.
Any help is appreciated - I'm not sure whether this is expected behavior for Camus or whether we have a problem with our implementation, and what the best method is to prevent this behavior (duplicating data).
Thanks ~ Matt
CamusJob properties for the test:
etl.destination.path=/user/camus/kafka/data
etl.execution.base.path=/user/camus/kafka/workspace
etl.execution.history.path=/user/camus/kafka/history
dfs.default.classpath.dir=/user/camus/kafka/libs
etl.record.writer.provider.class=com.linkedin.camus.etl.kafka.common.AvroRecordWriterProvider
camus.message.decoder.class=com.linkedin.camus.etl.kafka.coders.KafkaAvroMessageDecoder
camus.message.timestamp.format=yyyy-MM-dd HH:mm:ss Z
mapreduce.output.fileoutputformat.compress=false
mapred.map.tasks=15
kafka.max.pull.hrs=1
kafka.max.historical.days=3
kafka.whitelist.topics=advertising.edmunds.admax
log4j.configuration=true
kafka.client.name=camus
kafka.brokers=<kafka brokers>
max.decoder.exceptions.to.print=5
post.tracking.counts.to.kafka=true
monitoring.event.class=class.that.generates.record.to.submit.counts.to.kafka
kafka.message.coder.schema.registry.class=com.linkedin.camus.schemaregistry.AvroRestSchemaRegistry
etl.schema.registry.url=<schema repo url>
etl.run.tracking.post=false
kafka.monitor.time.granularity=10
etl.daily=daily
etl.ignore.schema.errors=false
etl.output.codec=deflate
etl.deflate.level=6
etl.default.timezone=America/Los_Angeles
mapred.output.compress=false
mapred.map.max.attempts=2
Log snippet from the test, showing the commit behavior after the mappers succeed and subsequent job failure due to surpassing the 'other' threshold:
LocalJobRunner] - advertising.edmunds.admax:2:6; advertising.edmunds.admax:3:7 begin read at 2016-07-08T05:50:26.215-07:00; advertising.edmunds.admax:1:5; advertising.edmunds.admax:2:2; advertising.edmunds.admax:3:3 begin read at 2016-07-08T05:50:30.517-07:00; advertising.edmunds.admax:0:4 > map
[Task] - Task:attempt_local866350146_0001_m_000000_0 is done. And is in the process of committing
[LocalJobRunner] - advertising.edmunds.admax:2:6; advertising.edmunds.admax:3:7 begin read at 2016-07-08T05:50:26.215-07:00; advertising.edmunds.admax:1:5; advertising.edmunds.admax:2:2; advertising.edmunds.admax:3:3 begin read at 2016-07-08T05:50:30.517-07:00; advertising.edmunds.admax:0:4 > map
[Task] - Task attempt_local866350146_0001_m_000000_0 is allowed to commit now
[EtlMultiOutputFormat] - work path: file:/user/camus/kafka/workspace/2016-07-08-12-50-20/_temporary/0/_temporary/attempt_local866350146_0001_m_000000_0
[EtlMultiOutputFormat] - Destination base path: /user/camus/kafka/data
[EtlMultiOutputFormat] - work file: data.advertising-edmunds-admax.3.3.1467979200000-m-00000.avro
[EtlMultiOutputFormat] - Moved file from: file:/user/camus/kafka/workspace/2016-07-08-12-50-20/_temporary/0/_temporary/attempt_local866350146_0001_m_000000_0/data.advertising-edmunds-admax.3.3.1467979200000-m-00000.avro to: /user/camus/kafka/data/advertising-edmunds-admax/advertising-edmunds-admax.3.3.2.2.1467979200000.avro
[EtlMultiOutputFormat] - work file: data.advertising-edmunds-admax.3.7.1467979200000-m-00000.avro
[EtlMultiOutputFormat] - Moved file from: file:/user/camus/kafka/workspace/2016-07-08-12-50-20/_temporary/0/_temporary/attempt_local866350146_0001_m_000000_0/data.advertising-edmunds-admax.3.7.1467979200000-m-00000.avro to: /user/camus/kafka/data/advertising-edmunds-admax/advertising-edmunds-admax.3.7.8.8.1467979200000.avro
[Task] - Task 'attempt_local866350146_0001_m_000000_0' done.
[LocalJobRunner] - Finishing task: attempt_local866350146_0001_m_000000_0
[LocalJobRunner] - map task executor complete.
[Job] - map 100% reduce 0%
[Job] - Job job_local866350146_0001 completed successfully
[Job] - Counters: 23
File System Counters
FILE: Number of bytes read=117251
FILE: Number of bytes written=350942
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=10
Map output records=15
Input split bytes=793
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=13
Total committed heap usage (bytes)=251658240
com.linkedin.camus.etl.kafka.mapred.EtlRecordReader$KAFKA_MSG
DECODE_SUCCESSFUL=10
SKIPPED_OTHER=10
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=5907
total
data-read=840
decode-time(ms)=123
event-count=20
mapper-time(ms)=58
request-time(ms)=12114
skip-old=0
[CamusJob] - Group: File System Counters
[CamusJob] - FILE: Number of bytes read: 117251
[CamusJob] - FILE: Number of bytes written: 350942
[CamusJob] - FILE: Number of read operations: 0
[CamusJob] - FILE: Number of large read operations: 0
[CamusJob] - FILE: Number of write operations: 0
[CamusJob] - Group: Map-Reduce Framework
[CamusJob] - Map input records: 10
[CamusJob] - Map output records: 15
[CamusJob] - Input split bytes: 793
[CamusJob] - Spilled Records: 0
[CamusJob] - Failed Shuffles: 0
[CamusJob] - Merged Map outputs: 0
[CamusJob] - GC time elapsed (ms): 13
[CamusJob] - Total committed heap usage (bytes): 251658240
[CamusJob] - Group: com.linkedin.camus.etl.kafka.mapred.EtlRecordReader$KAFKA_MSG
[CamusJob] - DECODE_SUCCESSFUL: 10
[CamusJob] - SKIPPED_OTHER: 10
[CamusJob] - job failed: 50.0% messages skipped due to other, maximum allowed is 0.1%
I'm facing a pretty similar problem: my Kafka/Camus pipeline has been working well for about a year, but recently I stucked with duplication issue while integrating the ingestion from remote broker with very unstable connection and frequent job failures.
Today when examining Gobblin documentation, I realized that Camus sweeper is a tool that possibly what we are looking for. Try to integrate it in your pipeline.
I also think that the good idea would be to migrate to Gobblin (Camus successor) in the nearest future.
When I run wordcount.py (python mrjob http://mrjob.readthedocs.org/en/latest/guides/quickstart.html#writing-your-first-job) using hadoop streaming on a text file it gives me the output, but when the same is run against .snappy files I got zero size output.
Options Tried:
[testgen word_count]# cat mrjob.conf
runners:
hadoop: # this will work for both hadoop and emr
jobconf:
mapreduce.task.timeout: 3600000
#mapreduce.max.split.size: 20971520
#mapreduce.input.fileinputformat.split.maxsize: 102400
#mapreduce.map.memory.mb: 8192
mapred.map.child.java.opts: -Xmx4294967296
mapred.child.java.opts: -Djava.library.path=/opt/cloudera/parcels/CDH/lib/hadoop/lib/native/
java.library.path: /opt/cloudera/parcels/CDH/lib/hadoop/lib/native/
# "true" must be a string argument, not a boolean! (#323)
#mapreduce.output.compress: "true"
#mapreduce.output.compression.codec: org.apache.hadoop.io.compress.SnappyCodec
[testgen word_count]#
command:
[testgen word_count]# python word_count2.py -r hadoop hdfs:///input.snappy --conf mrjob.conf
creating tmp directory /tmp/word_count2.root.20151111.113113.369549
writing wrapper script to /tmp/word_count2.root.20151111.113113.369549/setup-wrapper.sh
Using Hadoop version 2.5.0
Copying local files into hdfs:///user/root/tmp/mrjob/word_count2.root.20151111.113113.369549/files/
PLEASE NOTE: Starting in mrjob v0.5.0, protocols will be strict by default. It's recommended you run your job with --strict-protocols or set up mrjob.conf as described at https://pythonhosted.org/mrjob/whats-new.html#ready-for-strict-protocols
Detected hadoop configuration property names that do not match hadoop version 2.5.0:
The have been translated as follows
mapred.map.child.java.opts: mapreduce.map.java.opts
HADOOP: packageJobJar: [/tmp/hadoop-root/hadoop-unjar3623089386341942955/] [] /tmp/streamjob3671127555730955887.jar tmpDir=null
HADOOP: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
HADOOP: Total input paths to process : 1
HADOOP: getLocalDirs(): [/tmp/hadoop-root/mapred/local]
HADOOP: Running job: job_201511021537_70340
HADOOP: To kill this job, run:
HADOOP: /opt/cloudera/parcels/CDH//bin/hadoop job -Dmapred.job.tracker=logicaljt -kill job_201511021537_70340
HADOOP: Tracking URL: http://xxxxx_70340
HADOOP: map 0% reduce 0%
HADOOP: map 100% reduce 0%
HADOOP: map 100% reduce 11%
HADOOP: map 100% reduce 97%
HADOOP: map 100% reduce 100%
HADOOP: Job complete: job_201511021537_70340
HADOOP: Output: hdfs:///user/root/tmp/mrjob/word_count2.root.20151111.113113.369549/output
Counters from step 1:
(no counters found)
Streaming final output from hdfs:///user/root/tmp/mrjob/word_count2.root.20151111.113113.369549/output
removing tmp directory /tmp/word_count2.root.20151111.113113.369549
deleting hdfs:///user/root/tmp/mrjob/word_count2.root.20151111.113113.369549 from HDFS
[testgen word_count]#
No errors thrown, job output is successful, Verified job configurations in the job stats it has taken.
Is there any other way to troubleshoot?
I think you are not using correctly options.
In your mrjob.conf file:
mapreduce.output.compress: "true" means that you want a compressed output
mapreduce.output.compression.codec: org.apache.hadoop.io.compress.SnappyCodec means that the compression uses Snappy codec
You are apparently expecting that your compressed inputs will be correctly read by your mappers. Unfortunately, it does not work like that. If you really want to feed your job with compressed data, you may look at SequenceFile. Another simpler solution would be to feed your job with text files only.
What about also configuring your input format, like mapreduce.input.compression.codec: org.apache.hadoop.io.compress.SnappyCodec
[Edit: you should also remove this symbol # at the beginning of lines that define options. Otherwise, they will be ignored]
Thanks for your inputs Yann, but finally the below line inserted into the job script solved the problem.
HADOOP_INPUT_FORMAT='<org.hadoop.snappy.codec>'
I have a single node cluster from which i got logs and gave input TraceBuilder and it works.
I have grouped 5 node cluster under default rack and got logs. Here job and topology traces are generated properly.
I have set up 5 node cluster with each of them mapped to different racks.
I have hadoop-0.20.2 set up on my Eclipse Helios. So, i ran Tracebuilder using
Main Class: org.apache.hadoop.tools.rumen.TraceBuilder
I ran some jobs on cluster and used copy of /usr/local/hadoop/logs/history folder of master node as input to TraceBuilder.
Arguments: /home/arun/job.json /home/arun/topology.json /home/ubuntu/Documents/testlog
But i get
11/12/16 12:02:37 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
11/12/16 12:02:38 WARN rumen.TraceBuilder: TraceBuilder got an error while processing the [possibly virtual] file master_1324011575958_job_201112161029_0001_hduser_word+count within Path file:/home/ubuntu/Documents/testlog/master_1324011575958_job_201112161029_0001_hduser_word+count
java.lang.NullPointerException
at org.apache.hadoop.tools.rumen.JobBuilder.processTaskAttemptFinishedEvent(JobBuilder.java:492)
at org.apache.hadoop.tools.rumen.JobBuilder.process(JobBuilder.java:149)
at org.apache.hadoop.tools.rumen.TraceBuilder.processJobHistory(TraceBuilder.java:310)
at org.apache.hadoop.tools.rumen.TraceBuilder.run(TraceBuilder.java:264)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:69)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:83)
at org.apache.hadoop.tools.rumen.TraceBuilder.main(TraceBuilder.java:142)
.....................
It generates job trace json file but the fields like hostname and location are "null" in it and the topology trace json file doesn't have 5 node's info and is like this :
{
"name" : "<root>",
"children" : [ ]
}
Can anyone help me out?
This error occurs because none expected input file was found on input directory.
The input directory must to contain job files, for example: job_201205192032_0006_conf.xml. These files are stored inside the logs/history folder, but under some directories generated in accord with the job execution and execution date
I wrote a mapreduce job to extract some info from a dataset. The dataset is users' rating about movies. The number of users is about 250K and the number of movies is about 300k. The output of map is <user, <movie, rating>*> and <movie,<user,rating>*>. In the reducer, I will process these pairs.
But when I run the job, the mapper completes as expected, but reducer always complain that
Task attempt_* failed to report status for 600 seconds.
I know this is due to failed to update status, so I added a call to context.progress() in my code like this:
int count = 0;
while (values.hasNext()) {
if (count++ % 100 == 0) {
context.progress();
}
/*other code here*/
}
Unfortunately, this does not help. Still many reduce tasks failed.
Here is the log:
Task attempt_201104251139_0295_r_000014_1 failed to report status for 600 seconds. Killing!
11/05/03 10:09:09 INFO mapred.JobClient: Task Id : attempt_201104251139_0295_r_000012_1, Status : FAILED
Task attempt_201104251139_0295_r_000012_1 failed to report status for 600 seconds. Killing!
11/05/03 10:09:09 INFO mapred.JobClient: Task Id : attempt_201104251139_0295_r_000006_1, Status : FAILED
Task attempt_201104251139_0295_r_000006_1 failed to report status for 600 seconds. Killing!
BTW, the error happened in reduce to copy phase, the log says:
reduce > copy (28 of 31 at 26.69 MB/s) > :Lost task tracker: tracker_hadoop-56:localhost/127.0.0.1:34385
Thanks for the help.
The easiest way will be to set this configuration parameter:
<property>
<name>mapred.task.timeout</name>
<value>1800000</value> <!-- 30 minutes -->
</property>
in mapred-site.xml
The easiest another way is to set in your Job Configuration inside the program
Configuration conf=new Configuration();
long milliSeconds = 1000*60*60; <default is 600000, likewise can give any value)
conf.setLong("mapred.task.timeout", milliSeconds);
**before setting it please check inside the Job file(job.xml) file in jobtracker GUI about the correct property name whether its mapred.task.timeout or mapreduce.task.timeout
.
.
.
while running the job check in the Job file again whether that property is changed according to the setted value.
In newer versions, the name of the parameter has been changed to mapreduce.task.timeout as described in this link (search for task.timeout). In addition, you can also disable this timeout as described in the above link:
The number of milliseconds before a task will be terminated if it
neither reads an input, writes an output, nor updates its status
string. A value of 0 disables the timeout.
Below is an example setting in the mapred-site.xml:
<property>
<name>mapreduce.task.timeout</name>
<value>0</value> <!-- A value of 0 disables the timeout -->
</property>
If you have hive query and its timing out , you can set above configurations in following way:
set mapred.tasktracker.expiry.interval=1800000;
set mapred.task.timeout= 1800000;
From https://issues.apache.org/jira/browse/HADOOP-1763
causes might be :
1. Tasktrackers run the maps successfully
2. Map outputs are served by jetty servers on the TTs.
3. All the reduce tasks connects to all the TT where maps are run.
4. since there are lots of reduces wanting to connect the map output server, the jetty servers run out of threads (default 40)
5. tasktrackers continue to make periodic heartbeats to JT, so that they are not dead, but their jetty servers are (temporarily) down.