Best practice for unions in Go - go

Go has no unions. But unions are necessary in many places. XML makes excessive use of unions or choice types. I tried to find out, which is the preferred way to work around the missing unions. As an example I tried to write Go code for the non terminal Misc in the XML standard which can be either a comment, a processing instruction or white space.
Writing code for the three base types is quite simple. They map to character arrays and a struct.
type Comment Chars
type ProcessingInstruction struct {
Target *Chars
Data *Chars
}
type WhiteSpace Chars
But when I finished the code for the union, it got quite bloated with many redundant functions. Obviously there must be a container struct.
type Misc struct {
value interface {}
}
In order to make sure that the container holds only the three allowed types I made the value private and I had to write for each type a constructor.
func MiscComment(c *Comment) *Misc {
return &Misc{c}
}
func MiscProcessingInstruction (pi *ProcessingInstruction) *Misc {
return &Misc{pi}
}
func MiscWhiteSpace (ws *WhiteSpace) *Misc {
return &Misc{ws}
}
In order to be able to test the contents of the union it was necessary to write three predicates:
func (m Misc) IsComment () bool {
_, itis := m.value.(*Comment)
return itis
}
func (m Misc) IsProcessingInstruction () bool {
_, itis := m.value.(*ProcessingInstruction)
return itis
}
func (m Misc) IsWhiteSpace () bool {
_, itis := m.value.(*WhiteSpace)
return itis
}
And in order to get the correctly typed elements it was necessary to write three getters.
func (m Misc) Comment () *Comment {
return m.value.(*Comment)
}
func (m Misc) ProcessingInstruction () *ProcessingInstruction {
return m.value.(*ProcessingInstruction)
}
func (m Misc) WhiteSpace () *WhiteSpace {
return m.value.(*WhiteSpace)
}
After this I was able to create an array of Misc types and use it:
func main () {
miscs := []*Misc{
MiscComment((*Comment)(NewChars("comment"))),
MiscProcessingInstruction(&ProcessingInstruction{
NewChars("target"),
NewChars("data")}),
MiscWhiteSpace((*WhiteSpace)(NewChars(" \n")))}
for _, misc := range miscs {
if (misc.IsComment()) {
fmt.Println ((*Chars)(misc.Comment()))
} else if (misc.IsProcessingInstruction()) {
fmt.Println (*misc.ProcessingInstruction())
} else if (misc.IsWhiteSpace()) {
fmt.Println ((*Chars)(misc.WhiteSpace()))
} else {
panic ("invalid misc");
}
}
}
You see there is much code looking almost the same. And it will be the same for any other union. So my question is: Is there any way to simplify the way to deal with unions in Go?
Go claims to simplify programing work by removing redundancy. But I think the above example shows the exact opposite. Did I miss anything?
Here is the complete example: http://play.golang.org/p/Zv8rYX-aFr

As it seems that you're asking because you want type safety, I would firstly argue that your initial
solution is already unsafe as you have
func (m Misc) Comment () *Comment {
return m.value.(*Comment)
}
which will panic if you haven't checked IsComment before. Therefore this solution has no benefits over
a type switch as proposed by Volker.
Since you want to group your code you could write a function that determines what a Misc element is:
func IsMisc(v {}interface) bool {
switch v.(type) {
case Comment: return true
// ...
}
}
That, however, would bring you no compiler type checking either.
If you want to be able to identify something as Misc by the compiler then you should
consider creating an interface that marks something as Misc:
type Misc interface {
ImplementsMisc()
}
type Comment Chars
func (c Comment) ImplementsMisc() {}
type ProcessingInstruction
func (p ProcessingInstruction) ImplementsMisc() {}
This way you could write functions that are only handling misc. objects and get decide later
what you really want to handle (Comments, instructions, ...) in these functions.
If you want to mimic unions then the way you wrote it is the way to go as far as I know.

I think this amount of code might be reduced, e.g. I personally do not think that safeguarding type Misc against containing "illegal" stuff is really helpful: A simple type Misc interface{} would do, or?
With that you spare the constructors and all the Is{Comment,ProcessingInstruction,WhiteSpace} methods boil down to a type switch
switch m := misc.(type) {
Comment: fmt.Println(m)
...
default: panic()
}
Thats what package encoding/xml does with Token.

I am not sure to understand your issue. The 'easy' way to do it would be like the encoding/xml package with interface{}. If you do not want to use interfaces, then you can do something like you did.
However, as you stated, Go is a typed language and therefore should be use for typed needs.
If you have a structured XML, Go can be a good fit, but you need to write your schema. If you want a variadic schema (one given field can have multiple types), then you might be better off with an non-typed language.
Very useful tool for json that could easily rewritten for xml:
http://mholt.github.io/json-to-go/
You give a json input and it gives you the exact Go struct. You can have multiple types, but you need to know what field has what type. If you don't, you need to use the reflection and indeed you loose a lot of the interest of Go.

TL;DR You don't need a union, interface{} solves this better.
Unions in C are used to access special memory/hardware. They also subvert the type system. Go does not have the language primitives access special memory/hardware, it also shunned volatile and bit-fields for the same reason.
In C/C++ unions can also be used for really low level optimization / bit packing. The trade off: sacrifice the type system and increase complexity in favor of saving some bits. This of course comes with all the warnings about optimizations.
Imagine Go had a native union type. How would the code be better? Rewrite the code with this:
// pretend this struct was a union
type MiscUnion struct {
c *Comment
pi *ProcessingInstruction
ws *WhiteSpace
}
Even with a builtin union accessing the members of MiscUnion requires a runtime check of some kind. So using an interface is no worse off. Arguably the interface is superior as the runtime type checking is builtin (impossible to get wrong) and has really nice syntax for dealing with it.
One advantage of a union type is static type check to make sure only proper concrete types where put in a Misc. The Go way of solving this is "New..." functions, e.g. MiscComment, MiscProcessingInstruction, MiscWhiteSpace.
Here is a cleaned up example using interface{} and New* functions: http://play.golang.org/p/d5bC8mZAB_

Related

Attempting to Implement the Visitor Pattern in Go using Generics

I have the following simple generics based go package that implements the GoF Visitor pattern:
package patterns
type Social interface {
AcceptVisitor(visitor *Visitor)
}
type Component struct {
}
func (c *Component) AcceptVisitor(visitor *Visitor) {
visitor.VisitComponent(c)
}
type Collection[T Social] struct {
Component
items[]T
}
func (c *Collection[T]) AcceptVisitor(visitor *Visitor) {
visitor.VisitCollection(c) // <- Error Here
}
type Visitor struct {
}
func (v *Visitor) VisitComponent(component *Component) {
}
func (v *Visitor) VisitCollection(collection *Collection[Social]) {
for _, item := range collection.items {
item.AcceptVisitor(v)
}
}
The compiler gives the following error:
./patterns.go:20:26: cannot use c (variable of type *Collection[T]) as
type *Collection[Social] in argument to visitor.VisitCollection
This seems strange to me since the generic type T is constrained as Social.
I tried a couple things:
Replaced the Visitor abstract type with an interface definition. This
resulted in circular dependencies between the Social and Visitor
interfaces.
Removed the generics from the declarations which fixes the problem
but we pretty much need generics for the Collection type.
It seems like go should be able to handle the generics in this code.
POSSIBLE SOLUTION:
After a really helpful discussion with #blackgreen we decided that the problem shows up due to a few things:
Go, being (truly) strictly typed, does not allow an argument that is being passed into a function to be "narrowed" to a subset of the original type even though the compiler could still prove it to be safe. Whether or not Go should allow narrowing is up for debate.
Go does not allow generic constraints on a method since the constraints might conflict with generic constraints on the structure associated with the method.
Go, rightly so, does not allow circular dependencies. We could abstract all the dependencies for the Visitor pattern into interfaces but would then have the circular dependencies required by the "double dispatch" aspect of the pattern.
To work-around these items, and still get the benefits of the Visitor pattern, we can change the VisitXYZ() methods in the Visitor structure to be (potentially generic) functions that each take a *Visitor argument as the first parameter of the function and the object being visited as the second parameter.
I posted this solution in the Go Playground: https://go.dev/play/p/vV7v61teFbj
NOTE: Even though this possible solution does appear to solve the problem, it really doesn't. If you think about writing several different types of Visitors (one for pretty printing, one for copying, one for sorting, etc.) you quickly realize that since the VisitXYZ() functions are not methods, you cannot have multiple versions of each function for each Visitor type. In the end, the fact that the Visitor pattern really does require a circular dependency between the Social interface and the Visitor interface dooms it for Go. I am closing this post but will leave the analysis so that others won't need to repeat it.
I came to the conclusion that generics make this pattern worse. By parametrizing the Collection struct, you force items []T to have the same elements. With plain interfaces instead you can have dynamic dispatch, hence allow items to contain different implementations. This alone should be sufficient reason.
This is a minimal implementation without generics, adapted from some Java examples (runnable code):
Main interfaces:
type Visitor func(Element)
type Element interface {
Accept(Visitor)
}
An implementor:
type Foo struct{}
func (f Foo) Accept(visitor Visitor) {
visitor(f)
}
The container:
type List struct {
elements []Element
}
func (l *List) Accept(visitor Visitor) {
for _, e := range l.elements {
e.Accept(visitor)
}
visitor(l)
}
The visitor itself, as a regular function. And here you can define any function at all freely. Being untyped, you can pass it directly as a Visitor argument:
func doVisitor(v Element) {
switch v.(type) {
case *List:
fmt.Println("visiting list")
case Foo:
fmt.Println("visiting foo")
case Bar:
fmt.Println("visiting bar")
}
}

Map to store generic type functions in Go

I am trying to create a Map with String and functions as key and Value. It works if all functions are of same signature but my requirement is to store functions of different signature in the same map. Is this possible in Go?
package main
import "fmt"
func main() {
functions := buildFunctions()
f := functions["isInValid"]
// f("hello")
}
func buildFunctions() map[string]func() bool {
functions := map[string]func() bool{
"isInValid": isInValid,
"isAvailable": isAvailable,
}
return functions
}
func isInValid(s string) bool {
fmt.Println("Invalid ", s)
return true
}
func isAvailable(s string, s1 string) bool {
return true
}
https://play.golang.org/p/ocwCgEpa_0G
Go is a strongly typed language. So, it's not possible the way, it is possible with, say python. But just like python, once you do this, you loose the benefit of compile time error checks, and your runtime error checking has to be full-proof.
Here's what you can do:
Use map[string]interface{} type for your function map, which enables you to store anything. But then you are responsible to correctly type assertion at the time of calling. Problem is that, in most cases, if while calling a function, you could know the type of function, may be you might not need a map in the first place.
Use a map[string]string or map[string]interface{} as the argument, and return type in all the functions that are supposed to go into this map. Or at least put all the variable arguments into this map.
eg.
map[string](func (name string, age int, other_attributes
map[string]interface{}) (map[string]interface{}, error))
But again, each function call should provide the correct arguments, and there should also be checks inside the functions, to see (with non-panic version of map lookup), if the parameters are correctly provided, if not, you can return a custom error like ErrInvalidParametersPassed. (playing the role of an interpreter). But you will still have lesser chances of messing up, compared to first option. As the burden of type assertion will be on the function implementation, and not the caller. Caller just needs to fetch it's required values, which it anyways needs to know about.
But yet, best option would be to redesign your actual solution in a way, so that it can be done without going this road. As #bereal suggested in comments, it's good to have separate maps if possible, or maybe use a superset of arguments if they aren't too different, or too many. If there are just a few arguments, even switch case could be clean enough. Look for ways that cheat/bypass compile time checks, when you are truly convinced that there is no other elegant way.

Express function that takes any slice

I want to express a function that can take any slice. I thought that I could do this:
func myFunc(list []interface{}) {
for _, i := range list {
...
some_other_fun(i)
...
}
}
where some_other_fun(..) itself takes an interface{} type. However, this doesn't work because you can't pass []DEFINITE_TYPE as []interface{}. See: https://golang.org/doc/faq#convert_slice_of_interface which notes that the representation of an []interface{} is different. This answer sums up why but with respect to pointers to interfaces instead of slices of interfaces, but the reason is the same: Why can't I assign a *Struct to an *Interface?.
The suggestion provided at the golang.org link above suggests rebuilding a new interface slice from the DEFINITE_TYPE slice. However, this is not practical to do everywhere in the code that I want to call this function (This function is itself meant to abbreviate only 9 lines of code, but those 9 lines appear quite frequently in our code).
In every case that I want to invoke the function I would be passing a []*DEFINITE_TYPE which I at first thought would be easier to abstract until, again, I discovered Why can't I assign a *Struct to an *Interface? (also linked above).
Further, everytime I want to invoke the function it is with a different DEFINITE_TYPE so implementing n examples for the n types would not save me any lines of code or make my code any clearer (quite the contrary!).
It is frustrating that I can't do this since the 9 lines are idiomatic in our code and a mistype could easily introduce a bug. I'm really missing generics. Is there really no way to do this?!!
In the case you provided, you would have to create your slice as a slice of interface e.g. s := []interface{}{}. At which point you could literally put any type you wanted into the slice (even mixing types). But then you would have to do all sorts of type assertions and everything gets really nasty.
Another technique that is commonly used by unmarshalers is a definition like this:
func myFunc(list interface{})
Because a slice fits an interface, you can indeed pass a regular slice into this. You would still need to do some validation and type assertions in myFunc, but you would be doing single assertions on the entire list type, instead of having to worry about a list that could possibly contain mixed types.
Either way, due to being a statically typed language, you eventually have to know the type that is passed in via assertions. It's just the way things are. In your case, I would probably use the func signature as above, then use a type switch to handle the different cases. See this document https://newfivefour.com/golang-interface-type-assertions-switch.html
So, something like this:
func myFunc(list interface{}) {
switch v := list.(type) {
case []string:
// do string thing
case []int32, []int64:
// do int thing
case []SomeCustomType:
// do SomeCustomType thing
default:
fmt.Println("unknown")
}
}
No there is no easy way to deal with it. Many people miss generics in Go.
Maybe you can get inspired by sort.Sort function and sort.Interface to find a reasonable solution that would not require copying slices.
Probably the best thing to do is to define an interface that encapsulates what myFunc needs to do with the slice (i.e., in your example, get the nth element). Then the argument to the function is that interface type and you define the interface method(s) for each type you want to pass to the function.
You can also do it with the reflect package, but that's probably not a great idea since it will panic if you pass something other than a slice (or array or string).
func myFunc(list interface{}) {
listVal := reflect.ValueOf(list)
for i := 0; i < listVal.Len(); i++ {
//...
some_other_fun(listVal.Index(i).Interface())
//...
}
}
See https://play.golang.org/p/TyzT3lBEjB.
Now with Go 1.18+, you can use the generics feature to do that:
func myFunc[T any](list []T) {
for _, item := range list {
doSomething(item)
}
}

Store a collection of constructors for types that all conform to the same interface

I'm making an app that'll need sets of rules to run a job. The app offers the possibility to express the rules in one of several different languages. I therefore have defined an interface to a live rules engine, that offers the methods that the app will need to query the current set of rules. Behind this interface, there will be one different type of engine, according to the source language.
Now I'd like to instantiate a rules engine according to the rule file's extension. But I get some errors which I have a hard time to overcome.
Let me first offer this simplified skeleton :
package main
//
//
// The interface
type RulesEngine interface {
SomeRuleEvaluator(string) bool
}
//
//
// An implementation, with its constructor
type ASimpleRulesEngine struct {
// I've also tried with :
// RulesEngine
}
func NewASimpleRulesEngine(context string) *ASimpleRulesEngine {
re := ASimpleRulesEngine{}
return &re
}
func (re *ASimpleRulesEngine) SomeRuleEvaluator(dummy string) bool {
return true
}
//
//
// A client, that'll want to be able to choose a constructor
var rulesEngineConstructorsPerExtension map[string](func(string) RulesEngine)
func init() {
rulesEngineConstructorsPerExtension = make(map[string](func(string)RulesEngine))
rulesEngineConstructorsPerExtension[".ini"] = NewASimpleRulesEngine
}
func main() {
}
When I try to build this, I get 35: cannot use NewASimpleRulesEngine (type func(string) *ASimpleRulesEngine) as type func(string) RulesEngine in assignment
I've also tried :
assigning without a pointer, although I felt stupid while trying it
having an intermediate step in the initfunction, where I'd create a new(func (string) RulesEngine) and then assign to it, with and without pointer.
storing function pointers like in C, but the compiler said it could not take the adress of my function.
I'm not that familiar with Go and this felt a bit surprising. What would be the proper type signature to use ? Is this possible at all ? If it's unavoidable, I'll obviously have a simple array of extensions on one side (to check if a file is potentially a rules file), and a big switch on the other side to provide the adequate constructor, but as much possible I'd like to avoid such duplication.
Thank you for any insight !
(edited : I've accepted my own answer for lack of any other, but its most relevant part is #seh 's comment below)
Following #JorgeMarey 's comment, and not wanting to sacrifice the constructor's type signature, I came up with this. But it does feel very tacky to me. I'll be glad to hear about a cleaner way.
func init() {
rulesEngineConstructorsPerExtension = make(map[string](func(string)RulesEngine))
cast_NewASimpleRulesEngine := func(content string) RulesEngine {
return NewASimpleRulesEngine(content)
}
rulesEngineConstructorsPerExtension[".ini"] = cast_NewASimpleRulesEngine
}
(an attempt to explicitly cast with (func(string)RulesEngine)( NewASimpleRulesEngine) was deemed unfit by the compiler too)

Enforcing type in "generic" code with empty interfaces

Sorry for the ambiguous title.
I'm reading this book http://algs4.cs.princeton.edu/home/ and I thought it would be good to implement the examples in Go as a learning exercise, however the book uses Java as its language to describe code in.
One of the first chapters discusses setting up some core datatypes/container style classes to re-use later on but I'm having trouble trying to hammer these into a Go setting, mainly because these datatypes seem to be enjoying the use of Java generics.
For example, I've written the following code
package bag
type T interface{}
type Bag []T
func (a *Bag) Add(t T) {
*a = append(*a, t)
}
func (a *Bag) IsEmpty() bool {
return len(*a) == 0
}
func (a *Bag) Size() int {
return len(*a)
}
This works in principle in the sense that I can add items to a Bag and check its size and everything. However this also means that the following code is legal
a := make(bag.Bag,0,0)
a.Add(1)
a.Add("Hello world!")
a.Add(5.6)
a.Add(time.Now())
I was just wondering if there was any way of enforcing the type so it conforms to a contract similar to
Bag<T> bagOfMyType = new Bag<T>()
e.g.
Bag<Integer> bagOfInts = new Bag<Integer>()
I know Go doesn't have generics and they're not really The Go Way, but I was just wondering if it is a possible to "enforce" anything at compile time (probably not)
Sorry for the long post
EDIT: OK so I've been looking into this a little further, I've pretty much given up with the generics side of things (I understand this is not on the roadmap for Go) so I'm thinking of doing something similar to Haskell typeclasses with interfaces, e.g.
type T interface{}
type Bag interface {
Add(t T)
IsEmpty() bool
Size() int
}
type IntSlice []int
func (i *IntSlice) Add(t T) {
*i = append(*i, t.(int)) // will throw runtime exception if user attempts to add anything other than int
}
func (i *IntSlice) IsEmpty() bool {
return len(*i) == 0
}
func (i *IntSlice) Size() int {
return len(*i)
}
The problem with this is the type enforcement is only enforced at runtime.
Anyone got any ideas how to improve on this?
I'm new to Go myself, so I'm curious if someone will have a better answer, but here's how I see it:
You want compile-time enforcement that when Add() is called on an IntSlice, its parameter is an int. Well, here's how you do that:
func (i *IntSlice) Add(t int) {
*i = append(*i, t)
}
Since there aren't generics, the Add() method is going to be different for every type of Bag, so the Bag interface, assuming you need it, becomes just:
type Bag interface {
IsEmpty() bool
Size() int
}
That makes sense to me, because you can't pass a Bag around and throw just anything in it. Knowing that something is a Bag isn't enough to know how to call Add() on it; you must know what type of Bag you're dealing with.
You could make the interface specific to the type, like IntBag, but since only one type is actually going to satisfy that interface, you might as well get rid of the interface and change the name of IntSlice to IntBag.
Basically that means giving up entirely on anything generic-like, and just creating a type with some methods that do what you want:
type IntBag []int
func (b *IntBag) Add(i int) {
*b = append(*b, i)
}
func (b IntBag) IsEmpty() bool {
return len(b) == 0
}
func (b IntBag) Size() int {
return len(b)
}
Update: Sometimes generics really would come in handy. It seems to me we're left choosing on a case-by-case basis what exactly is best for a given problem. With empty interfaces and reflection, you can get some generic-like behavior, but it tends to be ugly and you give up some compile-time type checking. Or you give up on generics and have some code-duplication. Or you just do it a totally different way.
I asked a question a few weeks ago about how I should use Go to handle problems that look to me like they need class hierarchies. The answer was basically that there is no general solution; it's all case-by-case. I think the same applies for generics: there are no generics in Go, and there's no general solution for translating generics-based solutions to Go.
There are many cases where you might use generics in another language but interfaces are perfectly adequate (or truly shine) in Go. Your example here is one where interfaces aren't really a proper replacement. See also: Go Vs. Generics.
I'm pretty well-versed with Go. Generics are a hotly-debated topic, and there is currently nothing analogous to Java generics or C++ templates. The convention at the moment is to implement a "generic" type with an empty interface and then wrap it with a specific type implementation that makes sure only elements of that type are used. Here's an example with container/list from the Go standard library.
http://play.golang.org/p/9w9H1EPHKR
package main
import (
"container/list"
"fmt"
)
type IntList struct {
innerList *list.List
}
func NewIntList() *IntList {
return &IntList{list.New()}
}
func (l *IntList) Add(i int) {
// this is the only way to add an element to the list,
// and the Add() method only takes ints, so only ints
// can be added
l.innerList.PushBack(i)
}
func (l *IntList) Last() int {
lastElem := l.innerList.Back()
// We can safely type-assert to an int, because Add()
// guarantees that we can't put a non-int into our list
return lastElem.Value.(int)
}
func main() {
l := NewIntList()
l.Add(5)
l.Add(4)
l.Add(3)
l.Add(2)
l.Add(1)
fmt.Println("Expecting 1; got:", l.Last())
}

Resources