Imperative vs Functional Programming in Ruby - ruby

I am reading this article about how to program in Ruby in Functional Style.
https://code.google.com/p/tokland/wiki/RubyFunctionalProgramming
One of the examples that took my attention is the following:
# No (mutable):
output = []
output << 1
output << 2 if i_have_to_add_two
output << 3
# Yes (immutable):
output = [1, (2 if i_have_to_add_two), 3].compact
Whereas the "mutable" option is less safe because we changing the value of the array, the inmutable one seems less efficient because it calls .compact. That means that it has to iterate the array to return a new one without the nil's values.
In that case, which option is preferible? And in general how do you choose between immutability (functional) vs performance (in the case when the imperative solution is faster)?

You're not wrong. It is often the case that a purely functional solution will be slower than a destructive one. Immutable values generally mean a lot more allocation has to go on unless the language is very well optimized for them (which Ruby isn't).
However, it doesn't often matter. Worrying about the performance of specific operations is not a great use of your time 99% of the time. Shaving off a microsecond from a piece of code that runs 100 times a second is simply not a win.
The best approach is usually to do whatever makes your code cleanest. Very often this means taking advantage of the functional features of the language — for example, map and select instead of map! and keep_if. Then, if you need to speed things up, you have a nice, clean codebase that you can make changes to without fear that your changes will make one piece of code stomp over another piece's data.

Related

How small should functions be? [duplicate]

This question already has answers here:
When is a function too long? [closed]
(24 answers)
Closed 5 years ago.
How small should I be making functions? For example, if I have a cake baking program.
bakeCake(){
if(cakeType == "chocolate")
fetchIngredients("chocolate")
else
if(cakeType == "plain")
fetchIngredients("plain")
else
if(cakeType == "Red velvet")
fetchIngredients("Red Velvet")
//Rest of program
My question is, while this stuff is simple enough on its own, when I add much more stuff to the bakeCake function it becomes cluttered. But lets say that this program has to bake thousands of cakes per second. From what I've heard, it takes significantly longer (relative to computer time) to use another function compared to just doing the statements in the current function. So something that's similar like this should be very easy to read, and if efficiency is important wouldn't I want to keep it in there?
Basically, at what point do I sacrifice readability for efficiency. And a quick bonus question, at what point does having too many functions decrease readability? Here's an example of Apple's swift tutorial.
func isCandyAmountAcceptable(bandMemberCount: Int, candyCount: Int) -> Bool {
return candyCount % bandMemberCount == 0
They said that because the function name isCandyAmountAcceptable was easier to read than candyCount % bandMemberCount == 0 that it'd be good to make a function for that. But from my perspective it may take a few seconds to figure out what the second option is saying, but it's also more readable when ti comes to knowing how it works.
Sorry about being all over the place and kinda asking 2 questions in one. Just to summarize my questions:
Does using functions extraneously make efficiency (speed) suffer? If it does how can I figure out what the cutoff between readability and efficiency is?
How small and simple should I make functions for? Obviously I'd make them if I ever have to repeat the function, but what about one time use functions?
Thanks guys, sorry if these questions are ignorant or anything but I'd really appreciate an answer.
Does using functions extraneously make efficiency (speed) suffer? If
it does how can I figure out what the cutoff between readability and
efficiency is?
For performance I would generally not factor in any overhead of direct function calls against any decent optimizer, since it can even make those come free of charge. When it doesn't, it's still a negligible overhead in, say, 99.9% of scenarios. That applies even for performance-critical fields. I work in areas like raytracing, mesh processing, and image processing and still the cost of a function call is typically on the bottom of the priority list as opposed to, say, locality of reference, efficient data structures, parallelization, and vectorization. Even when you're micro-optimizing, there are much bigger priorities than the cost of a direct function call, and even when you're micro-optimizing, you often want to leave a lot of the optimization for your optimizer to perform instead of trying to fight against it and do it all by hand (unless you're actually writing assembly code).
Of course with some compilers you might deal with ones that never inline function calls and have a bit of an overhead to every function call. But in that case I'd still say it's relatively negligible since you probably shouldn't be worrying about such micro-level optimizations when using those languages and interpreters/compilers. Even then it will probably often be bottom on the priority list, relatively speaking, as opposed to more impactful things like improving locality of reference and thread efficiency.
It's like if you're using a compiler with very simplistic register allocation that has a stack spill for every single variable you use, that doesn't mean you should be trying to use and reuse as few variables as possible to work around its tendencies. It means reach for a new compiler in those cases where that's a non-negligible overhead (ex: write some C code into a dylib and use that for the most performance-critical parts), or focus on higher-level optimizations like making everything run in parallel.
How small and simple should I make functions for? Obviously I'd make
them if I ever have to repeat the function, but what about one time
use functions?
This is where I'm going to go slightly off-kilter and actually suggest you consider avoiding the teeniest of functions for maintainability reasons. This is admittedly a controversial opinion although at least John Carmack seems to somewhat agree (specifically in respect to inlining code and avoiding excess function calls for cases where side effects occur to make the side effects easier to comprehend).
However, if you are going to make a lot of state changes, having them
all happen inline does have advantages; you should be made constantly
aware of the full horror of what you are doing.
The reason I believe it can sometimes be good to err on the side of meatier functions is because there's often more to comprehend than that of a simple function to understand all the information necessary to make a change or fix a problem.
Which is simpler to comprehend, a function whose logic consists of 80 lines of inlined code, or one distributed across a couple dozen functions and possibly ones that lead to disparate places throughout the codebase?
The answer is not so clear cut. Naturally if the teeny functions are used widely, like say sqrt or abs, then the reader can simply skim over the function call, knowing full well what it does like the back of his hand. But if there are a lot of teeny exotic functions that are only used one time, then the ability to comprehend the operation as a whole requires looking them up and understanding what they all individually do before you can get a proper comprehension of what's going on in terms of the big picture.
I actually disagree with that Apple Swift tutorial somewhat with that one-liner function because while it is easier to understand than figuring out what the arithmetic and comparison are supposed to do, in exchange it might require looking it up to see what it does in scenarios where you can't just say, isCandyAmountAcceptable is enough information for me and need to figure out exactly what makes an amount acceptable. Instead I would actually prefer a simple comment:
// Determine if candy amount is acceptable.
if (candyCount % bandMemberCount == 0)
...
... because then you don't have to jump to disparate places in code (the analogy of a book referring its reader to other pages in the book causing the readers to constantly have to flip back and forth between pages) to figure that out. Of course the idea behind this isCandyAmountAcceptable kind of function is that you shouldn't have to be concerned with such details about what makes a candy amount of acceptable, but too often in practice, we do end up having to understand the details more often than we optimally should to debug the code or make changes to it. If the code never needs to be debugged or changed, then it doesn't really matter how it's written. It could even be written in binary code for all we care. But if it's written to be maintained, as in debugged and changed in the future, then sometimes it is helpful to avoid making the readers have to jump through lots of hoops. The details do often matter in those scenarios.
So sometimes it doesn't help to understand the big picture by fragmenting it into the teeniest of puzzle pieces. It's a balancing act, but certain types of developers can err on the side of overly dicing up their systems into the most granular bits and pieces and finding maintenance problems that way. Those types are still often promising engineers -- they just have to find their balance. The other extreme is the one that writes 500-line functions and doesn't even consider refactoring -- those are kinda hopeless. But I think you fit in the former category, and for you, I'd actually suggest erring on the side of meatier functions ever-so-slightly just to keep the puzzle pieces a healthy size (not too small, not too big).
There's even a balancing act I see between code duplication and minimizing dependencies. An image library doesn't necessarily become easier to comprehend by shaving off a few dozen lines of duplicated math code if the exchange is a dependency to a complex math library with 800,000 lines of code and an epic manual on how to use it. In such cases, the image library might very well be easier to comprehend as well as use and deploy in new projects if it chooses instead to duplicate a few math functions here and there to avoid external dependencies, isolating its complexity instead of distributing it elsewhere.
Basically, at what point do I sacrifice readability for efficiency.
As stated above, I don't think readability of the small picture and comprehensibility of the big picture are synonymous. It can be really easy to read a two-line function and know what it does and still be miles away from understanding what you need to understand to make the necessary changes. Having many of those teeny one-shot two-liners can even delay the ability to comprehend the big picture.
But if I use "comprehensibility vs. efficiency" instead, I'd say upfront at the design-level for cases where you anticipate processing huge inputs. As an example, a video processing application with custom filters knows it's going to be looping over millions of pixels many times per frame. That knowledge should be utilized to come up with an efficient design for looping over millions of pixels repeatedly. But that's with respect to design -- towards the central aspects of the system that many other places will depend upon because big central design changes are too costly to apply late in hindsight.
That doesn't mean it has to start applying hard-to-understand SIMD code right off the bat. That's an implementation detail provided the design leaves enough breathing room to explore such an optimization in hindsight. Such a design would imply abstracting at the Image level, at the level of a million+ pixels, not at the level of a single IPixel. That's the worthy thing to take into consideration upfront.
Then later on, you can optimize hotspots and potentially use some difficult-to-understand algorithms and micro-optimizations here and there for those truly critical cases where there's a strong perceived business need for the operation to go faster, and hopefully with good tools (profilers, i.e.) in hand. The user cases guide you about what operations to optimize based on what the users do most often and find a strong desire to spend less time waiting. The profiler guides you about precisely what parts of the code involved in that operation need to be optimized.
Readability, performance and maintainability are three different things. Readability will make your code look simple and understandable, not necessarily best way to go. Performance is always going to be important, unless you are running this code in non-production environment where end result is more important than how it was achieved. Enter the world of enterprise applications, maintainability suddenly gains lot more importance. What you work on today will be handed over to somebody else after 6 months and they will be fixing/changing your code. This is why suddenly standard design patterns become so important. In a way, the readability is part of maintainability on larger scale. If the cake baking program above is something more complex than what its looking like, first thing stands out as a code smell is existence if if-else. Its gotta get replaced with polymorphism. Same goes with switch case kind of construct.
At what point do you decide to sacrifice one for other? That purely depends upon what business your code is achieving. Is it academic? Its got to be the perfect solution even if it means 90% devs struggle to figure out at first glance what the hell is happening. Is it a website belonging to retail store being maintained by distributed team of 50 devs working from 2 or more different geographic locations? Follow the conventional design patterns.
A rule of thumb I have always seen being followed in almost all situations is that if a function is growing beyond half the screen, its a candidate for refactoring. Do you have functions that end up you having your editor long length scroll bars? Refactor!!!

Is iteration slower than linear code? Which one is preferable?

I have a question in my mind from last many days, that while writing a code in ruby, is the linear code is faster and preferable than an iteration?
Let me have an example. There is a block of code for same functionality written in two different ways:
Way 1:
['dog', 'cat', 'tiger'].each do |pet_name|
puts "I have many pets, one of them is #{pet_name}."
end
Way 2:
puts "I have many pets, one of them is dog."
puts "I have many pets, one of them is cat."
puts "I have many pets, one of them is tiger."
So, I want to know which one is better and preferable? As per my view, I think 2nd one will take less time and memory. But I want to confirm.
Sequential logic is faster (see the benchmark below the fold), but it almost never matters. The clearer and more maintainable code should always be selected. Only a demonstrated need should cause one to cease optimizing for the programmer and begin optimizing for the machine. By demonstrated, I mean measured--you ran it and found it to be too slow.
The second example violates the DRY (Don't Repeat Yourself) principle and is a minor maintenance problem.
require 'benchmark'
LOOPS = 100000
Benchmark.bm(10) do |x|
x.report('iteration') do
LOOPS.times do
['dog', 'cat', 'tiger'].each do |pet_name|
"I have many pets, one of them is #{pet_name}."
end
end
end
x.report('sequence') do
LOOPS.times do
"I have many pets, one of them is dog."
"I have many pets, one of them is cat."
"I have many pets, one of them is tiger."
end
end
end
# => user system total real
# => iteration 0.200000 0.000000 0.200000 ( 0.202054)
# => sequence 0.010000 0.000000 0.010000 ( 0.012195)
In both cases, the time spent running the actual Ruby code is going to be completely dominated by the time it takes to print the text to the screen. Remember: console output is slow. Really slow. Painfully slow.
Since in both cases the code prints the same amount of text (and, in fact, the same text) to the screen, any miniscule performance differences that might or might not exist are going to be lost in the noise.
I think 2nd one will take less time and memory.
Don't think. Look.
Here's a crazy idea: if you want to know which one runs faster, run them and see which one runs faster!
There is always cost for calling a function, creating an array or creating loop.. However this is what programming languages were built for, so to answer your question: yes, the second code would be faster, nanoseconds maybe. But the first code is more general, you never know when you will buy a new pet. It's more useful, maybe someone will give you list of their pets, and you will want to talk about them? Generally speaking well - second code is unnoticeably faster, but first is better and preferable.
I realize that your example is very simplified and unlikely to happen in real world, but taking it literally:
The first example will create intermediate objects (strings and array), so you may say that in fact it will take more memory. However these object will be garbage-collected later, so you'll get your memory back. (This would not be the case if you defined array of symbols, as symbols are not garbage-collected).
It is also faster, because it doesn't need to fetch the objects internally from the array during each iteration. But the difference if obviously unnoticeable and should not be taken into account. What should be taken into account is readability here.
If you were a performance freak that you should probably define your methods without parentheses around the arguments as well, because this would result in smaller parse tree created by Ruby interpreter.
# slower
def meth(arg)
end
# faster
def meth arg
end
But considering it a valid reason would be silly of course.
Edit: if you're looking for a good Ruby style guide check this: https://github.com/bbatsov/ruby-style-guide
If one of those two options were clearly better and therefore preferable, the language wouldn't provide both options. As always, it depends on the circumstances. Questions you should be asking to decide include
which solution is more readable? (For habitual Ruby programmers, the first one is.) The more readable, the better.
which solution is faster? (You can only decide this by measuring. Take care to use a realistic example - the time difference for only three animals may not even be measurable reliably.) The faster, the better.
how much duplication is introduced by "unrolling" the more idiomatic version? (In this case, not very much - the puts and part of the string literal.) The less duplication you would introduce, the better.
As you see, the answers contradict each other, so you have to understand the context of the decision you're making and weigh the factors correctly to find out which is best overall.
Strictly speaking, yes, there is an overhead involved in iteration. There will be in any language you use (although some use compiler tricks to reduce this). The first version of your code will run a negligible amount quicker due to the cost of iteration, and of building the array you've defined. Also, the string building will probably add another tiny slice of cost.
That being said, it's such a tiny difference you'd have to be very picky to notice, or even care about any of this. It's negligible. Try benchmarking it yourself, you won't notice a significant difference.
I'm not prepared to write 10,000 lines like that for some method, are you? I find that iteration looks a lot cleaner, especially for non-trivial code, and is often preferable in terms of readability and clean code. Not to mention it's more DRY.

How many lines should a function have at most?

Is there a good coding technique that specifies how many lines a function should have ?
No. Lines of code is a pretty bad metric for just about anything. The exception is perhaps functions that have thousands and thousands of lines - you can be pretty sure those aren't well written.
There are however, good coding techniques that usually result in fewer lines of code per function. Things like DRY (Don't Repeat Yourself) and the Unix-philosophy ("Write programs that do one thing and do it well. Write programs to work together. Write programs to handle text streams, because that is a universal interface." from Wikipedia). In this case replace "programs" with "functions".
I don't think it matters, who is to say that once a functions lengths passes a certain number of lines it breaks a rule.
In general just code clean functions easy to use and reuse.
A function should have a well defined purpose. That is, try to create functions which does a single thing, either by doing the thing itself or by delegating work to a number of other functions.
Most functional compilers are excellent at inlining. Thus there is no inherent price to pay for breaking up your code: The compiler usually does a good job at deciding if a function call should really be one or if it can just inline the code right away.
The size of the function is less relevant though most functions in FP tend to be small, precise and to the point.
There is a McCabe metric of Cyclomatic Complexity which you might read about at this Wikipedia article.
The metric measures how many tests and loops are present in a routine. A rule of thumb might be that under 10 is a manageable amount of complexity while over 11 becomes more fault prone.
I have seen horrendous code that had a Complexity metric above 50. (It was error-prone and difficult to understand or change.) Re-writing it and breaking it down into subroutines reduced the complexity to 8.
Note the Complexity metric is usually proportional to the lines of code. It would provide you a measure on complexity rather than lines of code.
When working in Forth (or playing in Factor) I tend to continually refactor until each function is a single line! In fact, if you browse through the Factor libraries you'll see that the majority of words are one-liners and almost nothing is more than a few lines. In a language with inner-functions and virtually zero cost for calls (that is, threaded code implicitly having no stack frames [only return pointer stack], or with aggressive inlining) there is no good reason not to refractor until each function is tiny.
From my experience a function with a lot of lines of code (more than a few pages) is a nightmare to maintain and test. But having said that I don't think there is a hard and fast rule for this.
I came across some VB.NET code at my previous company that one function of 13 pages, but my record is some VB6 code I have just picked up that is approx 40 pages! Imagine trying to work out which If statement an Else belongs to when they are pages apart on the screen.
The main argument against having functions that are "too long" is that subdividing the function into smaller functions that only do small parts of the entire job improves readability (by giving those small parts actual names, and helping the reader wrap his mind around smaller pieces of behavior, especially when line 1532 can change the value of a variable on line 45).
In a functional programming language, this point is moot:
You can subdivide a function into smaller functions that are defined within the larger function's body, and thus not reducing the length of the original function.
Functions are expected to be pure, so there's no actual risk of line X changing the value read on line Y : the value of the line Y variable can be traced back up the definition list quite easily, even in loops, conditionals or recursive functions.
So, I suspect the answer would be "no one really cares".
I think a long function is a red flag and deserves more scrutiny. If I came across a function that was more than a page or two long during a code review I would look for ways to break it down into smaller functions.
There are exceptions though. A long function that consists of mostly simple assignment statements, say for initialization, is probably best left intact.
My (admittedly crude) guideline is a screenful of code. I have seen code with functions going on for pages. This is emetic, to be charitable. Functions should have a single, focused purpose. If you area trying to do something complex, have a "captain" function call helpers.
Good modularization makes friends and influences people.
IMHO, the goal should be to minimize the amount of code that a programmer would have to analyze simultaneously to make sense of a program. In general, excessively-long methods will make code harder to digest because programmers will have to look at much of their code at once.
On the other hand, subdividing methods into smaller pieces will only be helpful if those smaller pieces can be analyzed separately from the code which calls them. Splitting a method into sub-methods which would only be meaningful in the context where they are called is apt to impair rather than improve legibility. Even if before splitting the method would have been over 250 lines, breaking it into ten pieces which don't make sense in isolation would simply increase the simultaneous-analysis requirement from 250 lines to 300+ (depending upon how many lines are added for method headers, the code that calls them, etc.) When deciding whether a method should be subdivided, it's far more important to consider whether the pieces make sense in isolation, than to consider whether the method is "too long". Some 20-lines routine might benefit from being split into two ten-line routines and a two-line routine that calls them, but some 250-line routines might benefit from being left exactly as they are.
Another point which needs to be considered, btw, is that in some cases the required behavior of a program may not be a good fit with the control structures available in the language it's written in. Most applications have large "don't-care" aspects of their behavior, and it's generally possible to assign behavior that will fit nicely with a language's available control structures, but sometimes behavioral requirements may be impossible to meet without awkward code. In some such cases, confining the awkwardness to a single method which is bloated, but which is structured around the behavioral requirements, may be better than scattering it among many smaller methods which have no clear relationship to the overall behavior.

What's wrong with my logic here?

In java they say don't concatenate Strings, instead you should make a stringbuffer and keep adding to that and then when you're all done, use toString() to get a String object out of it.
Here's what I don't get. They say do this for performance reasons, because concatenating strings makes lots of temporary objects. But if the goal was performance, then you'd use a language like C/C++ or assembly.
The argument for using java is that it is a lot cheaper to buy a faster processor than it is to pay a senior programmer to write fast efficient code.
So on the one hand, you're supposed let the hardware take care of the inefficiencies, but on the other hand, you're supposed to use stringbuffers to make java more efficient.
While I see that you can do both, use java and stringbuffers, my question is where is the flaw in the logic that you either use a faster chip or you spent extra time writing more efficient software.
Developers should understand the performance implications of their coding choices.
It's not terribly difficult to write an algorithm that results in non-linear performance - polynomial, exponential or worse. If you don't understand to some extent how the language, compiler, and libraries support your algorithm you can fall into trap that no amount of processing power will dig you out of. Algorithms whose runtime or memory usage is exponential can quickly exceed the ability of any hardware to execute in a reasonable time.
Assuming that hardware can scale to a poorly designed algorithm/coding choice is a bad idea. Take for example a loop that concatenates 100,000 small strings together (say into an XML message). This is not an uncommon situation - but when implementing using individual string concatenations (rather than a StringBuffer) this will result in 99,999 intermediate strings of increasing size that the garbage collector has to dispose of. This can easily make the operation fail if there's not enough memory - or at best just take forever to run.
Now in the above example, some Java compilers can usually (but not always) rewrite the code to use a StringBuffer behind the scenes - but this is the exception, not the rule. In many situations the compiler simply cannot infer the intent of the developer - and it becomes the developer's responsibility to write efficient code.
One last comment - writing efficient code does not mean spending all your time looking for micro-optimizations. Premature optimization is the enemy of writing good code. However, you shouldn't confuse premature optimization with understanding the O() performance of an algorithm in terms of time/storage and making good choices about which algorithm or design to use in which situation.
As a developer you cannot ignore this level of knowledge and just assume that you can always throw more hardware at it.
The argument that you should use StringBuffer rather than concatenation is an old java cargo-cult myth. The Java compiler itself will convert a series of concatenations into a single StringBuffer call, making this "optimization" completely unnecessary in source code.
Having said that, there are legitimate reasons to optimize even if you're using a "slow" bytecode or interpreted language. You don't want to deal with the bugs, instability, and longer development cycle of C/C++, so you use a language with richer capabilities. (Built-in strings, whee!) But at the same time, you want your code to run as fast as possible with that language, so you avoid obviously inefficient constructs. IOWs just because you're giving up some speed by using java doesn't mean that you should forget about performance entirely.
The difference is that StringBuffer is not at all harder or more time-consuming to use than concatenating strings. The general principle is that if it's possible to gain efficiency without increasing development time/difficulty, it should be done: your principle only applies when that's not possible.
The language being slower isn't an excuse to use a much slower algorithm (and Java isn't that slow these days).
If we concatenate a 1-character to an n-character string, we need to copy n+1 characters into the new string. If we do
string s;
for (int i = 0; i < N; ++ i)
s = s + "c";
then the running time will be O(N2).
By contrast, a string buffer maintain a mutable buffer which reduces the running time to O(N).
You cannot double the CPU to reduce a quadratic algorithm into a linear one.
(Although the optimizer may have implicitly created a StringBuffer for you already.)
Java != ineffecient code.
You do not buy a faster processor to avoid writing efficient code. A bad programmer will write bad code regardless of language. The argument that C/C++ is more efficient than Java is an old argument that does not matter anymore.
In the real world, programming languages, operating systems and developpement tools are not selected by the peoples who will actually deal with it.
Some salesman of company A have lunch with your boss to sell its operating system ... and then some other salesman invite your boss at the strippers to sell its database engine ... and so on.
Then, and only then, they hire a bunch of programmers to put all that together. They want it nice, fast and cheap.
That's why you may end up programming high end performance applications with Java on a mobile device or nice 3D graphics on Windows with Python ...
So, your right, but it doesn't matter. :)
You should always put optimizations where you can. You shouldn't be "lazy coding" just because you have a fast processor...
I don't really know how stringbuffer works, nor do i work with Java, but assuming that java defines a string as char[], you're allocating a ton of dummy strings when doing str1+str2+str3+str4+str5, where you really only need to make a string of length str1.length+...str5.length and copy everything ONCE...
However, a smart compiler would optimize and automatically use stringbuffer

Reasoning about performance in Haskell

The following two Haskell programs for computing the n'th term of the Fibonacci sequence have greatly different performance characteristics:
fib1 n =
case n of
0 -> 1
1 -> 1
x -> (fib1 (x-1)) + (fib1 (x-2))
fib2 n = fibArr !! n where
fibArr = 1:1:[a + b | (a, b) <- zip fibArr (tail fibArr)]
They are very close to mathematically identical, but fib2 uses the list notation to memoize its intermediate results, while fib1 has explicit recursion. Despite the potential for the intermediate results to be cached in fib1, the execution time gets to be a problem even for fib1 25, suggesting that the recursive steps are always evaluated. Does referential transparency contribute anything to Haskell's performance? How can I know ahead of time if it will or won't?
This is just an example of the sort of thing I'm worried about. I'd like to hear any thoughts about overcoming the difficulty inherent in reasoning about the performance of a lazily-executed, functional programming language.
Summary: I'm accepting 3lectrologos's answer, because the point that you don't reason so much about the language's performance, as about your compiler's optimization, seems to be extremely important in Haskell - more so than in any other language I'm familiar with. I'm inclined to say that the importance of the compiler is the factor that differentiates reasoning about performance in lazy, functional langauges, from reasoning about the performance of any other type.
Addendum: Anyone happening on this question may want to look at the slides from Johan Tibell's talk about high performance Haskell.
In your particular Fibonacci example, it's not very hard to see why the second one should run faster (although you haven't specified what f2 is).
It's mainly an algorithmic issue:
fib1 implements the purely recursive algorithm and (as far as I know) Haskell has no mechanism for "implicit memoization".
fib2 uses explicit memoization (using the fibArr list to store previously computed values.
In general, it's much harder to make performance assumptions for a lazy language like Haskell, than for an eager one. Nevertheless, if you understand the underlying mechanisms (especially for laziness) and gather some experience, you will be able to make some "predictions" about performance.
Referential transparency increases (potentially) performance in (at least) two ways:
First, you (as a programmer) can be sure that two calls to the same function will always return the same, so you can exploit this in various cases to benefit in performance.
Second (and more important), the Haskell compiler can be sure for the above fact and this may enable many optimizations that can't be enabled in impure languages (if you've ever written a compiler or have any experience in compiler optimizations you are probably aware of the importance of this).
If you want to read more about the reasoning behind the design choices (laziness, pureness) of Haskell, I'd suggest reading this.
Reasoning about performance is generally hard in Haskell and lazy languages in general, although not impossible. Some techniques are covered in Chris Okasaki's Purely Function Data Structures (also available online in a previous version).
Another way to ensure performance is to fix the evaluation order, either using annotations or continuation passing style. That way you get to control when things are evaluated.
In your example you might calculate the numbers "bottom up" and pass the previous two numbers along to each iteration:
fib n = fib_iter(1,1,n)
where
fib_iter(a,b,0) = a
fib_iter(a,b,1) = a
fib_iter(a,b,n) = fib_iter(a+b,a,n-1)
This results in a linear time algorithm.
Whenever you have a dynamic programming algorithm where each result relies on the N previous results, you can use this technique. Otherwise you might have to use an array or something completely different.
Your implementation of fib2 uses memoization but each time you call fib2 it rebuild the "whole" result. Turn on ghci time and size profiling:
Prelude> :set +s
If it was doing memoisation "between" calls the subsequent calls would be faster and use no memory. Call fib2 20000 twice and see for yourself.
By comparison a more idiomatic version where you define the exact mathematical identity:
-- the infinite list of all fibs numbers.
fibs = 1 : 1 : zipWith (+) fibs (tail fibs)
memoFib n = fibs !! n
actually do use memoisation, explicit as you see. If you run memoFib 20000 twice you'll see the time and space taken the first time then the second call is instantaneous and take no memory. No magic and no implicit memoization like a comment might have hinted at.
Now about your original question: optimizing and reasoning about performance in Haskell...
I wouldn't call myself an expert in Haskell, I have only been using it for 3 years, 2 of which at my workplace but I did have to optimize and get to understand how to reason somewhat about its performance.
As mentionned in other post laziness is your friend and can help you gain performance however YOU have to be in control of what is lazily evaluated and what is strictly evaluated.
Check this comparison of foldl vs foldr
foldl actually stores "how" to compute the value i.e. it is lazy. In some case you saves time and space beeing lazy, like the "infinite" fibs. The infinite "fibs" doesn't generate all of them but knows how. When you know you will need the value you might as well just get it "strictly" speaking... That's where strictness annotation are usefull, to give you back control.
I recall reading many times that in lisp you have to "minimize" consing.
Understanding what is stricly evaluated and how to force it is important but so is understanding how much "trashing" you do to the memory. Remember Haskell is immutable, that means that updating a "variable" is actually creating a copy with the modification. Prepending with (:) is vastly more efficient than appending with (++) because (:) does not copy memory contrarily to (++). Whenever a big atomic block is updated (even for a single char) the whole block needs to be copied to represent the "updated" version. The way you structure data and update it can have a big impact on performance. The ghc profiler is your friend and will help you spot these. Sure the garbage collector is fast but not having it do anything is faster!
Cheers
Aside from the memoization issue, fib1 also uses non-tailcall recursion. Tailcall recursion can be re-factored automatically into a simple goto and perform very well, but the recursion in fib1 cannot be optimized in this way, because you need the stack frame from each instance of fib1 in order to calculate the result. If you rewrote fib1 to pass a running total as an argument, thus allowing a tail call instead of needing to keep the stack frame for the final addition, the performance would improve immensely. But not as much as the memoized example, of course :)
Since allocation is a major cost in any functional language, an important part of understanding performance is to understand when objects are allocated, how long they live, when they die, and when they are reclaimed. To get this information you need a heap profiler. It's an essential tool, and luckily GHC ships with a good one.
For more information, read Colin Runciman's papers.

Resources