Bejeweled board generation - algorithm

I've recently stumbled upon this question:
How would you generate a board for Bejeweled game to ensure that on the start there are no jewels that would collapse right away and that theres at least one possible move
I've been thinking about doing it in random, letting them fall if they wish before we actually display the board and say that the probability of having no moves to make at all is very low so that we shouldn't worry about it.
Is there a better approach?

One greedy approach would be during generating the board, every time you try to add a random jewel, just check if two previous ones horizontally and vertically are not the same to prevent the first situation (keep in mind the border conditions).
To ensure you have N number of matches, after you generate you can get a random point and update jewels either to the sides or top-bottom to make sure there are possible matches while still making sure the first situation won't happen.

Related

Developing a Checkers (Draughts) engine, how to begin?

I'm a relatively inexperienced programmer, and recently I've been getting interested in making a Checkers game app for a school project. I'm not sure where I can start (or if I should even attempt) at creating this. The project I have in mind probably wouldn't involve much more than a simple AI & a multiplayer player mode.
Can anyone give some hints / guidance for me to start learning?
To some extent I agree with some of the comments on the question that suggest 'try something simpler first', but checkers is simple enough that you may be able to get a working program - and you will certainly learn useful things as you go.
My suggestion would be to divide the problem into sections and solve each one in turn. For example:
1) Board representation - perhaps use an 8x8 array to represent the board. You need to be able to fill a square with empty, white piece, black piece, white king, black king. A more efficient solution might be to have a look at 'bit-boards' in which the occupancy of the board is described by a set of 64-bit integers. You probably want to end up with functions that can load or save a board state, print or display the board, and determine what (if anything ) is at some position.
2) Move representation - find a way to calculate legal moves. Which pieces can move and where they can move to. You will need to take into account - moving off the edges of the board, blocked moves, jumps, multiple jumps, kings moving 'backwards' etc. You probably want to end up with functions that can calculate all legal moves for a piece, determine if a suggested move is legal, record a game as a series of moves, maybe interface with the end user so by mousing or entering text commands you can 'play' a game on your board. So even if you only get that far then you have a 'product' you can demonstrate and people can interact with.
3) Computer play - this is the harder part - You will need to learn about minimax, alpha-beta pruning, iterative deepening and all the associated guff that goes into computer game AI - some of it sounds harder than it actually is. You also need to develop a position evaluation algorithm that measures the value of a position so the computer can decide which is the 'best' move to make. This can be as simple as the naive assumption that taking an opponents piece is always better than not taking one, that making a king is better than not making one, or that a move that leaves you with more future moves is better than one that leaves you with less choices for your next move. In practice, even a very simple 'greedy' board evaluation can work quite well if you can look 2-3 moves ahead.
All in all though, it may be simpler to look at something a little less ambitious than checkers - Othello is possibly a good choice and it is not hard to write an Othello player that can thrash a human who hasn't played a lot of the game. 3D tic-tac-toe, or a small dots-and-boxes game might be suitable too. Games like these are simpler as there are no kings or boundaries to complicate things, all (well most) moves are legal and they are sufficiently 'fun' to play to be a worthwhile software demonstration.
First let me state, the task you are talking about is a lot larger then you think it is.
How you should do it is break it down into very small manageable pieces.
The reasons are
Smaller steps are easier to understand
Getting fast feed back will help inspire you to continue and will help you fix things as they go wrong.
As you start think of the smallest step possible of something to do. Here are some ideas of parts to start:
Make a simple title screen- Just the title and to hit a key for it to
go away.
make the UI for an empty checkerboard grid.
I know those sound like not much but those will probably take much ore time than you think.
then add thing like adding the checkers, keeping the the gameboard data etc.,
Don't even think about AI until you have a game that two players can play with no UI.
What you should do is think about: what is the smallest increment I can do and add that, add that and then think about what the next small piece is.
Trust me this is the best way about going about it. If you try to write everything at once it will never happen.

Finding last wave in mql4/5

I was wondering if there's an efficient and easy way to determine waves in MQL4, just like zigzag indicator does it.
I was asked to help automate indicator, for that I need to determine 'waves', essentially max and min of a graph over some period of time (which is vague and all relative).
I don't have a clear image of how I want an indicator to work, but it would be something like that:
Find the last wave, i.e. where the direction of price last changed (neglecting the noise), and then for example reflect it with a trend line.
Is it possible to use zigzag structure to find that point, where direction changed. (Possibly not the only one, might need to find more that just the last point, but the preceding one. So i will want to adopt the algorithm)
I know it's a while since you asked this question and you probably already have an answer, but if not...
I dislike Zigzag and have not found a way to do what I want to do with it, so I will the last part of your questions with no, and believe me I tried.
The way I prefer it is to find bars that conform to the classic definition of fractals/swing points (i.e. a high with two lower highs on either side, or a low with two higher lows on either side), then try to make up for the shortcomings. E.g. Often there will be two high fractals/swings/waves in a row without an intermediate low fractal/swing/wave. So I add the best intermediate low point as a wave, or remove one of the highs (E.g. if the first one wasn't as subjectively significant). Some of the swing points that are identified are 'noisy', to use your term, and not ones that a human trader would have picked. So these need to be dealt with and so on. If you go down this route it is a long one, computers make many mistakes identifying appropriate swing points, so unfortunately not what I would call easy, but it is accurate, and how many easy indicators are there that actually make money over the long run?

issue with Ramer–Douglas–Peucker algorithm while drawing a line

I am developing a painting application for the iOS and to get smooth lines i apply the Ramer–Douglas–Peucker algorithm of the samples points.
The algorithm works on the whole vector of points and the result changes as points are added. It causes the result curve to "jump" while user paints.
Is there a known solution to this problem?
I've never implemented or used this algorithm, but I can think of two possible solutions:
Apply the algorithm to discrete sections of the line. That is, wait until the user has drawn 10 points, then run the algorithm on points 0..9. Then wait until the user has drawn the next 10 points and run the algorithm on points 10..19, and so on. One possible caveat is that it could create side-effects at points 10, 20, etc., but I really don't know if it would be noticeable to the user.
Wait until the user is done drawing, then run the algorithm once on the whole line. I've seen this approach used in apps before.
Both of these have the advantage that you're running the algorithm on each point no more than twice (and exactly once in the latter case), whereas if you run the algorithm every time a point is added you end up running it on every previous point every time you add a point, which could have a performance penalty.
Like I said, this isn't an area of expertise for me, but I hope it gives you some ideas.
I doubt this can be avoided at all, for a simple reason: the algorithm cannot guess the future points.
Imagine that you draw the first two points; obviously you will keep them. Now move to a third point. If R-D-P tells you to discard the middle point, you may not because that would cause a jump. And so on. Disallowing the jumps implies that you disallow any deletion !
Maybe you can lessen the psychological effect by drawing both the raw curve, which remains stable, and the smoothed one.
This said, R-D-P maybe not be the best approach for smoothing.

Artificial Intelligence for card battle based game

I want to make a game card battle based game. In this cards have specific attributes which can increase player's hp/attack/defense or attack an enemy to reduce his hp/attack/defense
I am trying to make an AI for this game. AI has to predict which card it will select on the basis of current situations like AI's hp/attack/defense and Enemy's hp/attack/defense. Since AI cannot see enemy's card hence it cannot predict future moves.
I searched few techniques of AI like minmax but I think minmax will not be suitable since AI cannot predict any future moves.
I am searching for a technique which is very flexible so that i can add a large variety of cards later.
Can you please suggest a technique for such game.
Thanks
This isn't an ActionScript 3 topic per se but I do think it's rather interesting.
First I'd suggest picking up Yu-Gi-Oh's Stardust Accelerator World Championship 2009 for the Nintendo DS or a comparable game.
The game has a fairly advanced computer AI system that not only deals with expected advantage or disadvantage in terms of hit points but also card advantage and combos. If you're taking on a challenge like this, I definately recommend you do the required research (plus, when playing video games is research, who can complain?)
My suggestion for building an AI is as follows:
As the computer decides its move, create an array of Move objects. Then have it create a new Move object for each possible Move that it can see.
For each move object, calculate how much less HP the opponent will have, how many cards they will still have, how many creatures,etc.
Have the computer decide what's most important (more damage, more card advantage) and have it play that move.
More sophisticated AI's will also think several turns in advance and perhaps "see" moves that others do not.
I suggest you look at this game of Reversi I built a few weeks back for fun in Flash. This has a very basic AI implemented, but the basics could be applied to your situation.
Basically, the way that game works is after each move (player or CPU, so I can determine if the player made the right move in comparison to what the CPU would have made), I create a Vector of each possible legal move. I then decide which move provides the highest score change, and set that as best move. However, I also check to see if the move would result in the other player having access to a corner (if you've never played, the player who grabs the corners generally wins). If it does, I tell the CPU to avoid that move and check the second best move and so on. The end result is a CPU who can actually put up a fight.
Keep in mind that this is just a single afternoon of work (for the entire game, from the crappy GUI to the functionality to the AI) so it is very basic and I could do things like run future possible moves through the check sequence as well. Fun fact, though, my moves (which I based the AI on obviously) are the ones the CPU would make nearly 80% of the time. The only time that does not hold true is when I play the game like you would Chess, where your move is made solely to position a move four turns down the line
For your game, you have a ton of variables to consider and not a single point scale as I had. I would suggest listing out each thing and applying a point value to each thing so you can apply importance values to each one. I did something similar for a caching system that automatically determines what is the most important file to keep based on age, usage, size, etc. You then look at each card in the CPU's hand, calculate what each card's value is and play that card (assuming it is legal to do so, of course).
Once you figure that out, you can look into things like what each move could do in the next turn (i.e. "damage" values for each move). And once that is done, you could add functionality to it that would let the CPU make strategic moves that would allow them to use a more powerful card or perform a "finishing" move or however it works in the end.
Again, though, keep it to a simple point based system and keep going from there. You need something you can physically compare, so sticking to a point based system makes that simple.
I apologize for the length of this answer, but I hope it helps in some way.

Finding patterns in Puzzle games

I was wondering, which are the most commonly used algorithms applied to finding patterns in puzzle games conformed by grids of cells.
I know that depends of many factors, like the kind of patterns You want to detect, or the rules of the game...but I wanted to know which are the most commonly used algorithms in that kind of problems...
For example, games like columns, bejeweled, even tetris.
I also want to know if detecting patterns by "brute force" ( like , scanning all the grid trying to find three adyacent cells of the same color ) is significantly worst that using particular algorithms in very small grids, like 4 X 4 for example ( and again, I know that depends of the kind of game and rules ...)
Which structures are commonly used in this kind of games ?
It's always domain-dependent. But there's also two situations where you'd do these kinds of searches. Ones situation is after a move (a change to the game field made by the player), and the other would be if/when the whole board has changed.
In Tetris, you wouldn't need to scan the whole board after a piece is dropped. You'd just have to search the rows the piece is touching.
In a match-3 games like Bejeweled, where you're swapping two adjacent pieces at a time, you'd first run a localized search in each direction around each square that changed, to see if any pieces have triggered. Then, if they have, the game will dump some new, random pieces onto the board. Now, you could run the same localized search around each square that's changed, but that might involve a lot of if statements and might actually be slower to just scanning the whole board from top left to bottom right. It depends on your implementation and would require profiling.
As Adrian says, a simple 2D array suffices. Often, though, you may add a "border" of pixels around this array, to simplify the searching-for-patterns aspect. Without a border, you'd have to have if statements along the edge squares that says "well, if you're in the top row, don't search up (and walk off the array)". With a border around it, you can safely just search through everything: saving yourself if statements, saving yourself branching, saving yourself pipeline issues, searching faster.
To Jon: these kinds of things really do matter in high-performance settings, even on modern machines, if you're making a search algorithm to play/solve the game. If you are, you want your underlying simulation to run as quickly as possible in order to search as deep as possible in the fewest cycles.
Regarding algorithms: It certainly depends on the game. For example for tetris, you'd only have to scan each row if it has the same color. I can't even think of something that would not equal the brute force approach in this case. But for most casual games brute force should be perfectly fine. Pattern recognition should be negligible in comparison to graphics and sound processing.
Regarding structures: A simple 2D-Array should suffice for representing the board.
Given the average computer speed these days, if it's real-time as the user is playing the game, it probably won't matter (EDIT: for very small game boards only). Certainly, it would depend on the complexity of the game logic, but also how fast the code is going to run on the target machine (i.e., is this a JavaScript web page game, or a Windows app written in C++).
If this is for something like simulating gameplay strategies, then use an algorithm that's more efficient.
A more efficient strategy could involve keeping track of incremental changes to the game board, instead of re-scanning the whole board every time.

Resources