Distinct values obtained by 1's and 2's with + and * - algorithm

Is there a way to calculate the number of distinct values that can be obtained by using at most A 1's and B 2's with the operations + and *? Multiplication takes precedence and bracketing is not allowed.
For example, say that A=2 and B=2. Then
1: 1 and 1*1
2: 1*2 and 1*1*2 and 2 and 1+1
3: 1+2 and 1*2 + 1
4: 1+1+2 and 2+2 and 2*2 and 1*2*2 and 1*1*2*2 and so on
5: 2*2 + 1 and 2+2+1 and 2+2+1*1
6: 1+1+2+2 and 2*2 +1+1
So the values (1, 2, 3, 4, 5, 6) can be obtained using 2 1's and 2 2's. But 8 cannot be formed because bracketing values is not allowed. Hence the answer is 6 (number of distinct values obtainable).
I have observed that,
If B = 0, then the answer is A.
If A = 0, then the answer is (number of possible values for B).
* for A values have no effect. So only + should be considered for A.
From there, I'm kind of stuck. Any help appreciated.
Thanks.

Related

Advanced Algorithms Problems ("Nice Triangle"): Prime number Pyramid where every number depends on numbers above it

I'm currently studying for an advanced algorithms and datastructures exam, and I simply can't seem to solve one of the practice-problems which is the following:
1.14) "Nice Triangle"
A "nice" triangle is defined in the following way:
There are three different numbers which the triangle consists of, namely the first three prime numbers (2, 3 and 5).
Every number depends on the two numbers below it in the following way.
Numbers are the same, resulting number is also the same. (2, 2 => 2)
Numbers are different, resulting number is the remaining number. (2, 3 => 5)
Given an integer N with length L, corresponding to the base of the triangle, determine the last element at the top
For example:
Given N = 25555 (and thus L = 5), the triangle looks like this:
2
3 5
2 5 5
3 5 5 5
2 5 5 5 5
=> 2 is the result of this example
What does the fact that every number is prime have to do with the problem?
By using a naive approach (simply calculating every single row), one obtains a time-complexity of O(L^2).
However, the professor said, it's possible with O(L), but I simply can't find any pattern!!!
I'm not sure why this problem would be used in an advanced algorithms course, but yes, you can do this in O(l) = O(log n) time.
There are a couple ways you can do it, but they both rely on recognizing that:
For the problem statement, it doesn't matter what digits you use. Lets use 0, 1, and 2 instead of 2, 3, and 5. Then
If a and b are the input numbers and c is the output, then c = -(a+b) mod 3
You can build the whole triangle using c = a+b mod 3 instead, and then just negate every second row.
Now the two ways you can do this in O(log n) time are:
For each digit d in the input, calculate the number of times (call it k) that it gets added into the final sum, add up all the kd mod 3, and then negate the result if you started with an even number of digits. That takes constant time per digit. Alternatively:
recognize that you can do arithmetic on n-sized values in constant time. Make a value that is a bit mask of all the digits in n. That takes 2 bits each. Then by using bitwise operations you can calculate each row from the previous one in constant time, for O(log n) time altogether.
Here's an implementation of the 2nd way in python:
def niceTriangle(n):
# a vector of 3-bit integers mod 3
rowvec = 0
# a vector of 1 for each number in the row
onevec = 0
# number of rows remaining
rows = 0
# mapping for digits 0-9
digitmap = [0, 0, 0, 1, 1, 2, 2, 2, 2, 2]
# first convert n into the first row
while n > 0:
digit = digitmap[n % 10]
n = n//10
rows += 1
onevec = (onevec << 3) + 1
rowvec = (rowvec << 3) + digit
if rows%2 == 0:
# we have an even number of rows -- negate everything
rowvec = ((rowvec&onevec)<<1) | ((rowvec>>1)&onevec)
while rows > 1:
# add each number to its neighbor
rowvec += (rowvec >> 3)
# isolate the entries >= 3, by adding 1 to each number and
# getting the 2^2 bit
gt3 = ((rowvec + onevec) >> 2) & onevec
# subtract 3 from all the greater entries
rowvec -= gt3*3
rows -= 1
return [2,3,5][rowvec%4]

Get permutation count

I searching for an algorithm which gives me the permutation count of the elements 1....n. If i define the cycle lengths.
For example n := 4
<Set of cycle lengths> -> permutation count
1,1,1,1 -> 1 read 4 cycles of length 1 leads to 1 permutation: 1,2,3,4
1,1,2 -> 5 read 2 cycles of length 1 and 1 cycle of length 2 leads to 5 permutations: 1,2,4,3, 1,4,3,2, 1,3,2,4, 2,1,3,4, 3,2,1,4,
2,2 -> 3 read 2 cycles of length 2 leads to 3 permutations: 2,1,4,3, 3,4,1,2,4,3,2,1
1,3 -> 9 read 1 cycle of length 1 and 1 cycle of length 3 leads to 9 permutations 1,3,2,4, 1,3,4,2, 1,4,2,3, 2,3,1,4, 2,4,3,1, 3,1,2,4, 3,2,4,1,4,1,3,2, 4,2,1,3,
4 -> 6 read 1 cycle of length 4 leads to 6 permutations:
2,3,4,1, 2,4,1,3, 3,1,4,2, 3,4,2,1, 4,1,2,3, 4,3,1,2
How can i compute the permutation count of a given set consisting cycle lengths? Iterating through all permutations is not an option.
For a given cycle type, we can produce a permutation with that cycle type by writing down a permutation of the list 1, ..., n and then bracketing it appropriately, according to the lengths in the cycle type, to get a permutation written in cycle notation.
For example, if we want cycle type (3, 2, 2), then the permutation 1, 2, 3, 4, 5, 6, 7 is bracketed as (1 2 3)(4 5)(6 7), while 5, 1, 6, 2, 4, 3, 7 gives (5 1 6)(2 4)(3 7).
It's clear that we get all permutations of cycle type (3, 2, 2) this way, but it's also clear that we can get each permutation in multiple different ways. There are two causes of overcounting: first, we can make a cyclic shift for any of the cycles: (5 1 6)(2 4)(3 7) is the same permutation as (1 6 5)(2 4)(3 7) or (6 5 1)(2 4)(3 7). Second, cycles of the same length can be permuted arbitrarily: (5 1 6)(2 4)(3 7) is the same permutation as (5 1 6)(3 7)(2 4). A bit of thought should convince you that these are the only possible causes of overcounting.
To account for both causes of overcounting, we divide the total number of permutations by (a) the product of the cycle lengths, and also (b) the factorial of the number of cycles for any given cycle length. In the (3, 2, 2) case: we divide by 3 × 2 × 2 for (a), and 2! for (b), because there are two cycles of length 2.
Since this is Stack Overflow, here's some Python code:
from collections import Counter
from math import factorial
def count_cycle_type(p):
"""Number of permutations with a given cycle type."""
count = factorial(sum(p))
for cycle_length, ncycles in Counter(p).items():
count //= cycle_length ** ncycles * factorial(ncycles)
return count
Example:
>>> count_cycle_type((2, 2))
3
>>> count_cycle_type((3, 2, 2))
210
To double check correctness, we can add the counts for all cycle types of a given length n, and check that we get n!. The cycle types are the partitions of n. We can compute those fairly simply by a recursive algorithm. Here's some code to do that. partitions is the function we want; bounded_partitions is a helper.
def bounded_partitions(n, k):
"""Generate partitions of n with largest element <= k."""
if k == 0:
if n == 0:
yield ()
else:
if n >= k:
for c in bounded_partitions(n - k, k):
yield (k,) + c
yield from bounded_partitions(n, k - 1)
def partitions(n):
"""Generate partitions of n."""
return bounded_partitions(n, n)
Example:
>>> for partition in partitions(5): print(partition)
...
(5,)
(4, 1)
(3, 2)
(3, 1, 1)
(2, 2, 1)
(2, 1, 1, 1)
(1, 1, 1, 1, 1)
And here's the double check: the sum of all the cycle type counts, for total lengths 5, 6, 7 and 20. We get the expected results of 5!, 6!, 7! and 20!.
>>> sum(count_cycle_type(p) for p in partitions(5))
120
>>> sum(count_cycle_type(p) for p in partitions(6))
720
>>> sum(count_cycle_type(p) for p in partitions(7))
5040
>>> sum(count_cycle_type(p) for p in partitions(20))
2432902008176640000
>>> factorial(20)
2432902008176640000
This can be broken down into:
The number of ways to partition elements in to buckets matching the required count of elements with each distinct cycle size;
Multiplied by, for each distinct cycle size, the number of unique ways to partition the elements evenly into the required number of cycles;
Multiplied by, for each cycle, the number of distinct cyclic orderings
1: For bucket sizes s1...sk, that works out to n!/(s1! * ... * sk!)
2: For a bucket containing m elements that must be partitioned into c cycles, there are m!/( (m/c)!c * c! ) ways
3: For a cycle containing m elements, there are (m-1)! distinct cyclic orderings if m > 1, and just 1 ordering otherwise

Count the total number ways to reach the nth stair using step 1, 2 or 3 but the step 3 can be taken only once

For any given value N we have to find the number of ways to reach the top while using steps of 1,2 or 3 but we can use 3 steps only once.
for example if n=7
then possible ways could be
[1,1,1,1,1,1,1]
[1,1,1,1,1,2]
etc but we cannot have [3,3,1] or [1,3,3]
I have managed to solve the general case without the constraint of using 3 only once with dynamic programming as it forms a sort of fibonacci series
def countWays(n) :
res = [0] * (n + 1)
res[0] = 1
res[1] = 1
res[2] = 2
for i in range(3, n + 1) :
res[i] = res[i - 1] + res[i - 2] + res[i - 3]
return res[n]
how do I figure out the rest of it?
Let res0[n] be the number of ways to reach n steps without using a 3-step, and let res1[n] be the number of ways to reach n steps after having used a 3-step.
res0[i] and res1[i] are easily calculated from the previous values, in a manner similar to your existing code.
This is an example of a pretty common technique that is often called "graph layering". See, for example: Shortest path in a maze with health loss
Let us first ignore the three steps here. Imagine that we can only use steps of one and two. Then that means that for a given number n. We know that we can solve this with n steps of 1 (one solution), or n-2 steps of 1 and one step of 2 (n-1 solutions); or with n-4 steps of 1 and two steps of 2, which has n-2×n-3/2 solutions, and so on.
The number of ways to do that is related to the Fibonacci sequence. It is clear that the number of ways to construct 0 is one: just the empty list []. It is furthermore clear that the number of ways to construct 1 is one as well: a list [1]. Now we can proof that the number of ways Wn to construct n is the sum of the ways Wn-1 to construct n-1 plus the number of ways Wn-2 to construct n-2. The proof is that we can add a one at the end for each way to construct n-1, and we can add 2 at the end to construct n-2. There are no other options, since otherwise we would introduce duplicates.
The number of ways Wn is thus the same as the Fibonacci number Fn+1 of n+1. We can thus implement a Fibonacci function with caching like:
cache = [0, 1, 1, 2]
def fib(n):
for i in range(len(cache), n+1):
cache.append(cache[i-2] + cache[i-1])
return cache[n]
So now how can we fix this for a given step of three? We can here use a divide and conquer method. We know that if we use a step of three, it means that we have:
1 2 1 … 1 2 3 2 1 2 2 1 2 … 1
\____ ____/ \_______ _____/
v v
sum is m sum is n-m-3
So we can iterate over m, and each time multiply the number of ways to construct the left part (fib(m+1)) and the right part (fib(n-m-3+1)) we here can range with m from 0 to n-3 (both inclusive):
def count_ways(n):
total = 0
for m in range(0, n-2):
total += fib(m+1) * fib(n-m-2)
return total + fib(n+1)
or more compact:
def count_ways(n):
return fib(n+1) + sum(fib(m+1) * fib(n-m-2) for m in range(0, n-2))
This gives us:
>>> count_ways(0) # ()
1
>>> count_ways(1) # (1)
1
>>> count_ways(2) # (2) (1 1)
2
>>> count_ways(3) # (3) (2 1) (1 2) (1 1 1)
4
>>> count_ways(4) # (3 1) (1 3) (2 2) (2 1 1) (1 2 1) (1 1 2) (1 1 1 1)
7

How many permutations of a given array result in BST's of height 2?

A BST is generated (by successive insertion of nodes) from each permutation of keys from the set {1,2,3,4,5,6,7}. How many permutations determine trees of height two?
I been stuck on this simple question for quite some time. Any hints anyone.
By the way the answer is 80.
Consider how the tree would be height 2?
-It needs to have 4 as root, 2 as the left child, 6 right child, etc.
How come 4 is the root?
-It needs to be the first inserted. So we have one number now, 6 still can move around in the permutation.
And?
-After the first insert there are still 6 places left, 3 for the left and 3 for the right subtrees. That's 6 choose 3 = 20 choices.
Now what?
-For the left and right subtrees, their roots need to be inserted first, then the children's order does not affect the tree - 2, 1, 3 and 2, 3, 1 gives the same tree. That's 2 for each subtree, and 2 * 2 = 4 for the left and right subtrees.
So?
In conclusion: C(6, 3) * 2 * 2 = 20 * 2 * 2 = 80.
Note that there is only one possible shape for this tree - it has to be perfectly balanced. It therefore has to be this tree:
4
/ \
2 6
/ \ / \
1 3 5 7
This requires 4 to be inserted first. After that, the insertions need to build up the subtrees holding 1, 2, 3 and 5, 6, 7 in the proper order. This means that we will need to insert 2 before 1 and 3 and need to insert 6 before 5 and 7. It doesn't matter what relative order we insert 1 and 3 in, as long as they're after the 2, and similarly it doesn't matter what relative order we put 5 and 7 in as long as they're after 6. You can therefore think of what we need to insert as 2 X X and 6 Y Y, where the X's are the children of 2 and the Y's are the children of 6. We can then find all possible ways to get back the above tree by finding all interleaves of the sequences 2 X X and 6 Y Y, then multiplying by four (the number of ways of assigning X and Y the values 1, 3, 5, and 7).
So how many ways are there to interleave? Well, you can think of this as the number of ways to permute the sequence L L L R R R, since each permutation of L L L R R R tells us how to choose from either the Left sequence or the Right sequence. There are 6! / 3! 3! = 20 ways to do this. Since each of those twenty interleaves gives four possible insertion sequences, there end up being a total of 20 × 4 = 80 possible ways to do this.
Hope this helps!
I've created a table for the number of permutations possible with 1 - 12 elements, with heights up to 12, and included the per-root break down for anybody trying to check that their manual process (described in other answers) is matching with the actual values.
http://www.asmatteringofit.com/blog/2014/6/14/permutations-of-a-binary-search-tree-of-height-x
Here is a C++ code aiding the accepted answer, here I haven't shown the obvious ncr(i,j) function, hope someone will find it useful.
int solve(int n, int h) {
if (n <= 1)
return (h == 0);
int ans = 0;
for (int i = 0; i < n; i++) {
int res = 0;
for (int j = 0; j < h - 1; j++) {
res = res + solve(i, j) * solve(n - i - 1, h - 1);
res = res + solve(n - i - 1, j) * solve(i, h - 1);
}
res = res + solve(i, h - 1) * solve(n - i - 1, h - 1);
ans = ans + ncr(n - 1, i) * res;
}
return ans
}
The tree must have 4 as the root and 2 and 6 as the left and right child, respectively. There is only one choice for the root and the insertion should start with 4, however, once we insert the root, there are many insertion orders. There are 2 choices for, the second insertion 2 or 6. If we choose 2 for the second insertion, we have three cases to choose 6: choose 6 for the third insertion, 4, 2, 6, -, -, -, - there are 4!=24 choices for the rest of the insertions; fix 6 for the fourth insertion, 4, 2, -, 6, -,-,- there are 2 choices for the third insertion, 1 or 3, and 3! choices for the rest, so 2*3!=12, and the last case is to fix 6 in the fifth insertion, 4, 2, -, -, 6, -, - there are 2 choices for the third and fourth insertion ((1 and 3), or (3 and 1)) as well as for the last two insertions ((5 and 7) or (7 and 5)), so there are 4 choices. In total, if 2 is the second insertion we have 24+12+4=40 choices for the rest of the insertions. Similarly, there are 40 choices if the second insertion is 6, so the total number of different insertion orders is 80.

How to iterate through array combinations with constant sum efficiently?

I have an array and its length is X. Each element of the array has range 1 .. L. I want to iterate efficiently through all array combinations that has sum L.
Correct solutions for: L = 4 and X = 2
1 3
3 1
2 2
Correct solutions for: L = 5 and X = 3
1 1 3
1 3 1
3 1 1
1 2 2
2 1 2
2 2 1
The naive implementation is (no wonder) too slow for my problem (X is up to 8 in my case and L is up to 128).
Could anybody tell me how is this problem called or where to find a fast algorithm for the problem?
Thanks!
If I understand correctly, you're given two numbers 1 ≤ X ≤ L and you want to generate all sequences of positive integers of length X that sum to L.
(Note: this is similar to the integer partition problem, but not the same, because you consider 1,2,2 to be a different sequence from 2,1,2, whereas in the integer partition problem we ignore the order, so that these are considered to be the same partition.)
The sequences that you are looking for correspond to the combinations of X − 1 items out of L − 1. For, if we put the numbers 1 to L − 1 in order, and pick X − 1 of them, then the lengths of intervals between the chosen numbers are positive integers that sum to L.
For example, suppose that L is 16 and X is 5. Then choose 4 numbers from 1 to 15 inclusive:
Add 0 at the beginning and 16 at the end, and the intervals are:
and 3 + 4 + 1 + 6 + 2 = 16 as required.
So generate the combinations of X − 1 items out of L − 1, and for each one, convert it to a partition by finding the intervals. For example, in Python you could write:
from itertools import combinations
def partitions(n, t):
"""
Generate the sequences of `n` positive integers that sum to `t`.
"""
assert(1 <= n <= t)
def intervals(c):
last = 0
for i in c:
yield i - last
last = i
yield t - last
for c in combinations(range(1, t), n - 1):
yield tuple(intervals(c))
>>> list(partitions(2, 4))
[(1, 3), (2, 2), (3, 1)]
>>> list(partitions(3, 5))
[(1, 1, 3), (1, 2, 2), (1, 3, 1), (2, 1, 2), (2, 2, 1), (3, 1, 1)]
There are (L − 1)! / (X − 1)!(L − X)! combinations of X − 1 items out of L − 1, so the runtime of this algorithm (and the size of its output) is exponential in L. However, if you don't count the output, it only needs O(L) space.
With L = 128 and X = 8, there are 89,356,415,775 partitions, so it'll take a while to output them all!
(Maybe if you explain why you are computing these partitions, we might be able to suggest some way of meeting your requirements without having to actually produce them all.)

Resources