Data structures for indexing on object class - data-structures

I want to be able to keep a collection of objects and do lookups on it based on the type of the object, where the types can be hierarchical, like classes in a multiple inheritance OO system.
Right now I do this simply by keeping a list of the objects and looping through then, querying each to see if it is of the requested type, kind of like this, in Python-like pseudo-code:
def hastype(objects, type):
for obj in objects:
if isinstance(obj, type):
return obj
return None
Oftentimes this is not particularly a problem for me, but there are cases where it would be nice to be able to do these lookups more efficiently.
As mentioned, my types are very similar to classes in a multiple-inheritance system; each type declares any number of direct supertypes, and is given a complete list of direct and indirect supertypes from those. There is a type root. I can easily query the complete list of supertypes for a type. I also have global knowledge of all known types in the system, each of which has an integer ID, and the IDs are allocated contiguously, if that helps.
The main characteristic I care about is quick lookup regardless of how many objects are in the collection (it doesn't need to be O(1), but something better than O(n) would be nice), but I also care quite a bit about efficient insertion and removal (preferably regardless both of how many objects are in the collection and of how many supertypes are in the object's type, but I'm willing to buy that those criteria may be mutually exclusive), and also about the amount of memory used.
I've searched for some already invented data structure of this kind, but I haven't found any; and I also haven't been quite able to think of any myself that fits my needs as described above (for example, given the contiguous type IDs, it would be easy to create a direct lookup table from types to objects with O(1) lookup, but that would use far too much memory).
Does anyone know of, or can think of, any data structure of this kind?

Ok, I'll have a crack at it. If you're worried about memory constraints, then it might not be what you are looking for.
Here is some ruby-ish code:
# hash of all objects by type
#
# heirarchy:
#
# animal
# amphibian
# mammal
# hominid
#
objects_by_type = {
animal: [:snake, :fish]
amphibian: [:frog, :newt]
mammal: [:whale, :rabbit]
hominid: [:gorilla, :chimpanzee]
}
# print all objects that are of type `search_type`, or a subtype of `search_type`
def print_objects_of_type(search_type)
#get a list of all valid types
all_types = [search_type] + search_type.subtypes
#print all objects belonging to a type in all_types
all_types.each do |t|
objects_by_type[t].each do |obj|
print obj.to_s + ' '
end
end
print "\n"
end
print_objects_of_type(:animal)
# snake fish frog newt whale rabbit gorilla chimpanzee human
print_objects_of_type(:mammal)
# whale rabbit gorilla chimpanzee human
print_objects_of_type(:amphibian)
# frog newt
This all hinges on a hash where the key is a type, and the value is a list of objects.
Searching for objects of a given type will be better than O(n) because you go directly to the correct objects, without testing incorrect ones. The hash lookup will be O(1), and the rest depends on how fast you can get the list of subtypes for a given type.
For insertion and removal, you should be able to achieve O(1) as long as the lists of objects are linked lists. Insertion and removal will require one hash table lookup (O(1)) and one insert/delete on the linked list (also O(1)).
Now, the only problem is the amount of memory that this approach requires. The number of types affects the hash table memory usage, and the number of objects affects the linked list memory usage. You could replace the linked lists with contiguous memory (like a C++ std::vector), which can get rid of the per-object overhead, but then insertion/removal will not be O(1) any more. You'll just have to calculate the per-type and per-object overhead, multiply it by the expected number of types and objects, and make a decision from there.
All the solutions I can think of require a hash table, so if that has too much memory overhead, then I'm out of ideas.

Tom Dalling's method is fairly close to optimal in terms of memory costs. However, as mentioned there are algorithms that can trade those costs for faster supertype and counting number of direct/indirect supertypes a type has. Below are a couple algorithms that do so, and it's up to you to determine if the trade offs are worth it. In the end, the performance of both algorithms depend largely on what the type graph (connections between subtype and supertype) looks like. If the type graph is fairly spare or otherwise favorable (the performance related variables are closer to the lower end of the performance bounds), then the average (amortized) performance of the below algorithms can make them worth using.
Performance related variables:
N is the number of types.
D is the average depth (how far down the subtypes go). Bounds O(1) to O(N).
M is value of the highest numbered ID that is a subtype to a given type. Bounds O(1) to O(N).
k is the number of direct supertypes a type has. Bounds O(1) to O(N).
K is the average number of total unique supertypes a type has. Bounds O(1) to O(N).
L is the average number of total unique substypes a type has. Bounds O(1) to O(N).
E is the number of subtype-supertype connections. Bounds O(N) to O(N^2).
Algorithms:
O(1) supertype lookups with O(N*D) extra space cost. The idea is to have each type maintain a (dynamic) boolean array of all of it's super types. The supertype array would have a size equal to the maximum supertype ID number. The array would be build by copying the supertype arrays for each of the inherted supertypes, then adding the each of ids for the inherited supertypes themselves. The Pythonic check for if type has a supertype would be something like this:
return len(supertype_array) > supertype_id and supertype_array[supertype_id] is True
Adding a subtype is equal to doing set unions on the supertypes list for each direct supertype, which is O(k*N).
An alternative method provides superior space performance to #1 if E is relatively close to N at somewhat higher costs elsewhere. Supertype lookups are O(log N) and adding a subtype here is equal to doing set unions on the supertypes list for each direct supertype, but ends up being linear in the sum of the elements of each supertype list. The idea is to use a bitwise trie of IDs whenever it would take up less space than a boolean array. The benefit can clearly be seen if the ID numbers are 10,20,and 1000. A bitwise trie will require far fewer bits than the 1000 required in the boolean array. However, if the IDs are 1,2,3,4,5,...,100, then it requires at least 573 bits (calculation) for the bitwise Trie, while only requiring 100 for the boolean array. It wouldn't be too difficult to keep track of an upper limit how many bits are in each boolean array or bitwise Trie to determine when a subclass should use a boolean array (when the array is would be sufficiently full) and when a bitwise trie should be used based on total number of bits in the supertypes. Copying from a trie to a new trie is linear in the number of bits. While copying from a boolean array to a trie is linearlog in the number of bits. Determining if a type has a given supertype simply requires doing either a look-up like in #1 if a boolean array is more space efficient, otherwise a binary search is used. You could also use something like an y-fast trie if your inclined to try to implement it. A bitwise radix trie might increase the space efficiency.
Insert/delete costs for both algorithms is the same as Tom Dalling's, though a Radix Trie might be faster/more space efficient. It also wouldn't be difficult to keep a counter for number of supertypes for each type, but that requires an additional O(N log N) extra space.
Note that the size requirements assume that the minimium number of bits are used to represent a number to minimize space. Loping off those insignificant bits shouldn't add more than a factor of O(log N) to the time performances.

Related

Redis Sorted Set Member Size and Performance

Redis Sorted Sets primarily sort based on a Score; however, in cases where multiple members share the same Score lexicographical (Alpha) sorting is used. The Redis zadd documentation indicates that the function complexity is:
"O(log(N)) where N is the number of elements in the sorted set"
I have to assume this remains true regardless of the member size/length; however, I have a case where there are only 4 scores resulting in members being sorted lexicographically after Score.
I want to prepend a time bases key to each member to have the secondary sort be time based and also add some uniqueness to the members. Something like:
"time-based-key:member-string"
My member-string can be larger JavaScript object literals like so:
JSON.stringify( {/* object literal */} )
Will the sorted set zadd and other functionality's performance remain constant?
If not, by what magnitude will performance be affected?
The complexity comes from the number of elements that need to be tested (compared against the new element) to find the correct insertion point (presumably using a binary search algorithm).
It says nothing about how long it will take to perform each test, because that's considered a constant factor (in the sense that it doesn't vary when you add more items).
The amount of data which needs to be compared before determining that a new element should go before or after an existing one will affect the total clock time, but it will do so for each comparison equally.
So your overall clock time for an insert will be quickest when comparing scores only, and progressively slower the deeper into a pair of strings it has to look to determine their lexical order. This won't be any particular magnitude, though, just the concrete number of microseconds to be multiplied by the log(n) complexity factor.

Hash table - why is it faster than arrays?

In cases where I have a key for each element and I don't know the index of the element into an array, hashtables perform better than arrays (O(1) vs O(n)).
Why is that? I mean: I have a key, I hash it.. I have the hash.. shouldn't the algorithm compare this hash against every element's hash? I think there's some trick behind the memory disposition, isn't it?
In cases where I have a key for each element and I don't know the
index of the element into an array, hashtables perform better than
arrays (O(1) vs O(n)).
The hash table search performs O(1) in the average case. In the worst case, the hash table search performs O(n): when you have collisions and the hash function always returns the same slot. One may think "this is a remote situation," but a good analysis should consider it. In this case you should iterate through all the elements like in an array or linked lists (O(n)).
Why is that? I mean: I have a key, I hash it.. I have the hash..
shouldn't the algorithm compare this hash against every element's
hash? I think there's some trick behind the memory disposition, isn't
it?
You have a key, You hash it.. you have the hash: the index of the hash table where the element is present (if it has been located before). At this point you can access the hash table record in O(1). If the load factor is small, it's unlikely to see more than one element there. So, the first element you see should be the element you are looking for. Otherwise, if you have more than one element you must compare the elements you will find in the position with the element you are looking for. In this case you have O(1) + O(number_of_elements).
In the average case, the hash table search complexity is O(1) + O(load_factor) = O(1 + load_factor).
Remember, load_factor = n in the worst case. So, the search complexity is O(n) in the worst case.
I don't know what you mean with "trick behind the memory disposition". Under some points of view, the hash table (with its structure and collisions resolution by chaining) can be considered a "smart trick".
Of course, the hash table analysis results can be proven by math.
With arrays: if you know the value, you have to search on average half the values (unless sorted) to find its location.
With hashes: the location is generated based on the value. So, given that value again, you can calculate the same hash you calculated when inserting. Sometimes, more than 1 value results in the same hash, so in practice each "location" is itself an array (or linked list) of all the values that hash to that location. In this case, only this much smaller (unless it's a bad hash) array needs to be searched.
Hash tables are a bit more complex. They put elements in different buckets based on their hash % some value. In an ideal situation, each bucket holds very few items and there aren't many empty buckets.
Once you know the key, you compute the hash. Based on the hash, you know which bucket to look for. And as stated above, the number of items in each bucket should be relatively small.
Hash tables are doing a lot of magic internally to make sure buckets are as small as possible while not consuming too much memory for empty buckets. Also, much depends on the quality of the key -> hash function.
Wikipedia provides very comprehensive description of hash table.
A Hash Table will not have to compare every element in the Hash. It will calculate the hashcode according to the key. For example, if the key is 4, then hashcode may be - 4*x*y. Now the pointer knows exactly which element to pick.
Whereas if it has been an array, it will have to traverse through the whole array to search for this element.
Why is [it] that [hashtables perform lookups by key better than arrays (O(1) vs O(n))]? I mean: I have a key, I hash it.. I have the hash.. shouldn't the algorithm compare this hash against every element's hash? I think there's some trick behind the memory disposition, isn't it?
Once you have the hash, it lets you calculate an "ideal" or expected location in the array of buckets: commonly:
ideal bucket = hash % num_buckets
The problem is then that another value may have already hashed to that bucket, in which case the hash table implementation has two main choice:
1) try another bucket
2) let several distinct values "belong" to one bucket, perhaps by making the bucket hold a pointer into a linked list of values
For implementation 1, known as open addressing or closed hashing, you jump around other buckets: if you find your value, great; if you find a never-used bucket, then you can store your value in there if inserting, or you know you'll never find your value when searching. There's a potential for the searching to be even worse than O(n) if the way you traverse alternative buckets ends up searching the same bucket multiple times; for example, if you use quadratic probing you try the ideal bucket index +1, then +4, then +9, then +16 and so on - but you must avoid out-of-bounds bucket access using e.g. % num_buckets, so if there are say 12 buckets then ideal+4 and ideal+16 search the same bucket. It can be expensive to track which buckets have been searched, so it can be hard to know when to give up too: the implementation can be optimistic and assume it will always find either the value or an unused bucket (risking spinning forever), it can have a counter and after a threshold of tries either give up or start a linear bucket-by-bucket search.
For implementation 2, known as closed addressing or separate chaining, you have to search inside the container/data-structure of values that all hashed to the ideal bucket. How efficient this is depends on the type of container used. It's generally expected that the number of elements colliding at one bucket will be small, which is true of a good hash function with non-adversarial inputs, and typically true enough of even a mediocre hash function especially with a prime number of buckets. So, a linked list or contiguous array is often used, despite the O(n) search properties: linked lists are simple to implement and operate on, and arrays pack the data together for better memory cache locality and access speed. The worst possible case though is that every value in your table hashed to the same bucket, and the container at that bucket now holds all the values: your entire hash table is then only as efficient as the bucket's container. Some Java hash table implementations have started using binary trees if the number of elements hashing to the same buckets passes a threshold, to make sure complexity is never worse than O(log2n).
Python hashes are an example of 1 = open addressing = closed hashing. C++ std::unordered_set is an example of closed addressing = separate chaining.
The purpose of hashing is to produce an index into the underlying array, which enables you to jump straight to the element in question. This is usually accomplished by dividing the hash by the size of the array and taking the remainder index = hash%capacity.
The type/size of the hash is typically that of the smallest integer large enough to index all of RAM. On a 32 bit system this is a 32 bit integer. On a 64 bit system this is a 64 bit integer. In C++ this corresponds to unsigned int and unsigned long long respectively. To be pedantic C++ technically specifies minimum sizes for its primitives i.e. at least 32 bits and at least 64 bits, but that's beside the point. For the sake of making code portable C++ also provides a size_t primative which corresponds to the appropriate unsigned integer. You'll see that type a lot in for loops which index into arrays, in well written code. In the case of a language like Python the integer primitive grows to whatever size it needs to be. This is typically implemented in the standard libraries of other languages under the name "Big Integer". To deal with this the Python programming language simply truncates whatever value you return from the __hash__() method down to the appropriate size.
On this score I think it's worth giving a word to the wise. The result of arithmetic is the same regardless of whether you compute the remainder at the end or at each step along the way. Truncation is equivalent to computing the remainder modulo 2^n where n is the number of bits you leave intact. Now you might think that computing the remainder at each step would be foolish due to the fact that you're incurring an extra computation at every step along the way. However this is not the case for two reasons. First, computationally speaking, truncation is extraordinarily cheap, far cheaper than generalized division. Second, and this is the real reason as the first is insufficient, and the claim would generally hold even in its absence, taking the remainder at each step keeps the number (relatively) small. So instead of something like product = 31*product + hash(array[index]), you'll want something like product = hash(31*product + hash(array[index])). The primary purpose of the inner hash() call is to take something which might not be a number and turn it into one, where as the primary purpose of the outer hash() call is to take a potentially oversized number and truncate it. Lastly I'll note that in languages like C++ where integer primitives have a fixed size this truncation step is automatically performed after every operation.
Now for the elephant in the room. You've probably realized that hash codes being generally speaking smaller than the objects they correspond to, not to mention that the indices derived from them are again generally speaking even smaller still, it's entirely possible for two objects to hash to the same index. This is called a hash collision. Data structures backed by a hash table like Python's set or dict or C++'s std::unordered_set or std::unordered_map primarily handle this in one of two ways. The first is called separate chaining, and the second is called open addressing. In separate chaining the array functioning as the hash table is itself an array of lists (or in some cases where the developer feels like getting fancy, some other data structure like a binary search tree), and every time an element hashes to a given index it gets added to the corresponding list. In open addressing if an element hashes to an index which is already occupied the data structure probes over to the next index (or in some cases where the developer feels like getting fancy, an index defined by some other function as is the case in quadratic probing) and so on until it finds an empty slot, of course wrapping around when it reaches the end of the array.
Next a word about load factor. There is of course an inherent space/time trade off when it comes to increasing or decreasing the load factor. The higher the load factor the less wasted space the table consumes; however this comes at the expense of increasing the likelihood of performance degrading collisions. Generally speaking hash tables implemented with separate chaining are less sensitive to load factor than those implemented with open addressing. This is due to the phenomenon known as clustering where by clusters in an open addressed hash table tend to become larger and larger in a positive feed back loop as a result of the fact that the larger they become the more likely they are to contain the preferred index of a newly added element. This is actually the reason why the afore mentioned quadratic probing scheme, which progressively increases the jump distance, is often preferred. In the extreme case of load factors greater than 1, open addressing can't work at all as the number of elements exceeds the available space. That being said load factors greater than 1 are exceedingly rare in general. At time of writing Python's set and dict classes employ a max load factor of 2/3 where as Java's java.util.HashSet and java.util.HashMap use 3/4 with C++'s std::unordered_set and std::unordered_map taking the cake with a max load factor of 1. Unsurprisingly Python's hash table backed data structures handle collisions with open addressing where as their Java and C++ counterparts do it with separate chaining.
Last a comment about table size. When the max load factor is exceeded, the size of the hash table must of course be grown. Due to the fact that this requires that every element there in be reindexed, it's highly inefficient to grow the table by a fixed amount. To do so would incur order size operations every time a new element is added. The standard fix for this problem is the same as that employed by most dynamic array implementations. At every point where we need to grow the table we simply increase its size by its current size. This unsurprisingly is known as table doubling.
I think you answered your own question there. "shouldn't the algorithm compare this hash against every element's hash". That's kind of what it does when it doesn't know the index location of what you're searching for. It compares each element to find the one you're looking for:
E.g. Let's say you're looking for an item called "Car" inside an array of strings. You need to go through every item and check item.Hash() == "Car".Hash() to find out that that is the item you're looking for. Obviously it doesn't use the hash when searching always, but the example stands. Then you have a hash table. What a hash table does is it creates a sparse array, or sometimes array of buckets as the guy above mentioned. Then it uses the "Car".Hash() to deduce where in the sparse array your "Car" item is actually. This means that it doesn't have to search through the entire array to find your item.

When performing a looking in a Hash data structure, why is it a fast operation?

When you perform a lookup in a Hashtable, the key is converted into a hash. Now using that hashed value, does it directly map to a memory location, or are there more steps?
Just trying to understand things a little more under the covers.
And what other key based lookup data structures are there and why are they slower than a hash?
Hash tables are not necessarily fast. People consider hash tables a "fast" data structure because the retrieval time does not depend on the number of entries in the table. That is, retrieval from a hash table is an "O(1)" (constant time) operation.
Retrieval time from other data structures can vary depending on the number of entries in the map. For example, for a balanced binary tree, the retrieval time scales with the base-2 logarithm of its size; it's "O(log n)".
However, actually computing a hash code for an single object, in practice, often takes many times longer than comparing that type of object to others. So, you could find that for a small map, something like a red-black tree is faster than a hash table. As the maps grow, the hash table retrieval time will stay constant, and the red-black tree time will slowly grow until it is slower than a hash table.
A Hash (aka Hash Table) implies more than a Map (or Associative Array).
In particular, a Map (or Associative Array) is an Abstract Data Type:
...an associative array (also called a map or a dictionary) is an abstract data type composed of a collection of (key,value) pairs, such that each possible key appears at most once in the collection.
While a Hash table is an implementation of a Map (although it could also be considered an ADT that includes a "cost"):
...a hash table or hash map is a data structure that uses a hash function to map identifying values, known as keys [...], to their associated values [...]. Thus, a hash table implements an associative array [or, map].
Thus it is an implementation-detail leaking out: a HashMap is a Map that uses a Hash-table algorithm and thus provides the expected performance characteristics of such an algorithm. The "leaking" of the implementation detail is good in this case because it provides some basic [expected] bound guarantees, such as an [expected] O(1) -- or constant time -- get.
Hint: a hash function is important part of a hash-table algorithm and sets a HashMap apart from other Map implementations such as a TreeMap (that uses a red-black tree) or a ConcurrentSkipListMap (that uses a skip list).
Another form of a Map is an Association List (or "alist", which is common in LISP programming). While association lists are O(n) for get, they can have much less overhead for small n, which brings up another point: Big-Oh describes limiting behavior (as n -> infinity) and does not address the relative performance for a particular [smallish] n:
A description of a function in terms of big O notation usually only provides an upper bound on the growth rate of the function.
Please refer to the links above (including the javadoc) for the basic characteristics and different implementation strategies -- anything else I say here is already said there (or in other SO answers). If there are specific questions, open a new SO post if warranted :-)
Happy coding.
Here is the source for the HashMap implementation that is in OpenJDK 7. Looking at the put method shows that it a simple chaining as a collision-resolution method and that the underlying "bucket array" will grow by a factor of 2 each resize (which is triggered when the load factor is reached). The load factor and amortized performance expectations -- including those of the hashing function used -- are covered in the class documentation.
"Key-based" implies a mapping of some sort. You can implement one in a linked list or array, and it would probably be pretty slow (O(n)) for lookups or deletes.
Hashing takes constant time. In the more sophisticated implementations it will typically map to a memory address which stores a list of pointers back at the key object in addition to the mapped object or value, for collision detection and resolution.
The expensive operations are following the list of the "hashed to this location" objects to figure out which one you are really looking for. In theory, this could be O(n) for each lookup! However, if we use a larger space the probability of this occurring is reduced (although a few collisions is almost inevitable per the Birthday Problem) drastically.
If you start getting over a certain threshold of collisions, most implementations will expand the size of the hash table, which also takes another O(n) time. However, this will on average take place no more often than every 1/n inserts. So we have amortized constant time.

Hash table vs Balanced binary tree [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 6 years ago.
Improve this question
What factors should I take into account when I need to choose between a hash table or a balanced binary tree in order to implement a set or an associative array?
This question cannot be answered, in general, I fear.
The issue is that there are many types of hash tables and balanced binary trees, and their performances vary widely.
So, the naive answer is: it depends on the functionality you need. Use a hash table if you do not need ordering and a balanced binary tree otherwise.
For a more elaborate answer, let's consider some alternatives.
Hash Table (see Wikipedia's entry for some basics)
Not all hash tables use a linked-list as a bucket. A popular alternative is to use a "better" bucket, for example a binary tree, or another hash table (with another hash function), ...
Some hash tables do not use buckets at all: see Open Addressing (they come with other issues, obviously)
There is something called Linear re-hashing (it's a quality of implementation detail), which avoids the "stop-the-world-and-rehash" pitfall. Basically during the migration phase you only insert in the "new" table, and also move one "old" entry into the "new" table. Of course, migration phase means double look-up etc...
Binary Tree
Re-balancing is costly, you may consider a Skip-List (also better for multi-threaded accesses) or a Splay Tree.
A good allocator can "pack" nodes together in memory (better caching behavior), even though this does not alleviate the pointer-look-up issue.
B-Tree and variants also offer "packing"
Let's not forget that O(1) is an asymptotic complexity. For few elements, the coefficient is usually more important (performance-wise). Which is especially true if your hash function is slow...
Finally, for sets, you may also wish to consider probabilistic data structures, like Bloom Filters.
Hash tables are generally better if there isn't any need to keep the data in any sort of sequence. Binary trees are better if the data must be kept sorted.
A worthy point on a modern architecture: A Hash table will usually, if its load factor is low, have fewer memory reads than a binary tree will. Since memory access tend to be rather costly compared to burning CPU cycles, the Hash table is often faster.
In the following Binary tree is assumed to be self-balancing, like a red black tree, an AVL tree or like a treap.
On the other hand, if you need to rehash everything in the hash table when you decide to extend it, this may be a costly operation which occur (amortized). Binary trees does not have this limitation.
Binary trees are easier to implement in purely functional languages.
Binary trees have a natural sort order and a natural way to walk the tree for all elements.
When the load factor in the hash table is low, you may be wasting a lot of memory space, but with two pointers, binary trees tend to take up more space.
Hash tables are nearly O(1) (depending on how you handle the load factor) vs. Bin trees O(lg n).
Trees tend to be the "average performer". There are nothing they do particularly well, but then nothing they do particularly bad.
Hash tables are faster lookups:
You need a key that generates an even distribution (otherwise you'll miss a lot and have to rely on something other than hash; like a linear search).
Hash's can use a lot of empty space. You may reserve 256 entries but only need 8 (so far).
Binary trees:
Deterministic. O(log n) I think...
Don't need extra space like hash tables can
Must be kept sorted. Adding an element in the middle means moving the rest around.
A binary search tree requires a total order relationship among the keys. A hash table requires only an equivalence or identity relationship with a consistent hash function.
If a total order relationship is available, then a sorted array has lookup performance comparable to binary trees, worst-case insert performance in the order of hash tables, and less complexity and memory use than both.
The worst-case insertion complexity for a hash table can be left at O(1)/O(log K) (with K the number of elements with the same hash) if it's acceptable to increase the worst-case lookup complexity to O(K) or O(log K) if the elements can be sorted.
Invariants for both trees and hash tables are expensive to restore if the keys change, but less than O(n log N) for sorted arrays.
These are factors to take into account in deciding which implementation to use:
Availability of a total order relationship.
Availability of a good hashing function for the equivalence relationship.
A-priory knowledge of the number of elements.
Knowledge about the rate of insertions, deletions, and lookups.
Relative complexity of the comparison and hashing functions.
If you only need to access single elements, hashtables are better. If you need a range of elements, you simply have no other option than binary trees.
To add to the other great answers above, I'd say:
Use a hash table if the amount of data will not change (e.g. storing constants); but, if the amount of data will change, use a tree. This is due to the fact that, in a hash table, once the load factor has been reached, the hash table must resize. The resize operation can be very slow.
One point that I don't think has been addressed is that trees are much better for persistent data structures. That is, immutable structures. A standard hash table (i.e. one that uses a single array of linked lists) cannot be modified without modifying the whole table. One situation in which this is relevant is if two concurrent functions both have a copy of a hash table, and one of them changes the table (if the table is mutable, that change will be visible to the other one as well). Another situation would be something like the following:
def bar(table):
# some intern stuck this line of code in
table["hello"] = "world"
return table["the answer"]
def foo(x, y, table):
z = bar(table)
if "hello" in table:
raise Exception("failed catastrophically!")
return x + y + z
important_result = foo(1, 2, {
"the answer": 5,
"this table": "doesn't contain hello",
"so it should": "be ok"
})
# catastrophic failure occurs
With a mutable table, we can't guarantee that the table a function call receives will remain that table throughout its execution, because other function calls might modify it.
So, mutability is sometimes not a pleasant thing. Now, a way around this would be to keep the table immutable, and have updates return a new table without modifying the old one. But with a hash table this would often be a costly O(n) operation, since the entire underlying array would need to be copied. On the other hand, with a balanced tree, a new tree can be generated with only O(log n) nodes needing to be created (the rest of the tree being identical).
This means that an efficient tree can be very convenient when immutable maps are desired.
If you''ll have many slightly-different instances of sets, you'll probably want them to share structure. This is easy with trees (if they're immutable or copy-on-write). I'm not sure how well you can do it with hashtables; it's at least less obvious.
In my experience, hastables are always faster because trees suffer too much of cache effects.
To see some real data, you can check the benchmark page of my TommyDS library http://tommyds.sourceforge.net/
Here you can see compared the performance of the most common hashtable, tree and trie libraries available.
One point to note is about the traversal, minimum and maximum item. Hash tables don’t support any kind of ordered traversal, or access to the minimum or maximum items. If these capabilities are important, the binary tree is a better choice.

What sort of sorted datastructure is optimized for finding items within a range?

Say I have a bunch of objects with dates and I regularly want to find all the objects that fall between two arbitrary dates. What sort of datastructure would be good for this?
A binary search tree sounds like what you're looking for.
You can use it to find all the objects in O(log(N) + K), where N is the total number of objects and K is the number of objects that are actually in that range. (provided that it's balanced). Insertion/removal is O(log(N)).
Most languages have a built-in implementation of this.
C++:
http://www.cplusplus.com/reference/stl/set/
Java:
http://java.sun.com/j2se/1.4.2/docs/api/java/util/TreeSet.html
You can find the lower bound of the range (in log(n)) and then iterate from there until you reach the upper bound.
Assuming you mean by date when you say sorted, an array will do it.
Do a binary search to find the index that's >= the start date. You can then either do another search to find the index that's <= the end date leaving you with an offset & count of items, or if you're going to process them anyway just iterate though the list until you exceed the end date.
It's hard to give a good answer without a little more detail.
What kind of performance do you need?
If linear is fine then I would just use a list of dates and iterate through the list collecting all dates that fall within the range. As Andrew Grant suggested.
Do you have duplicates in the list?
If you need to have repeated dates in your collection then most implementations of a binary tree would probably be out. Something like Java's TreeSet are set implementations and don't allow repeated elements.
What are the access characteristics? Lots of lookups with few updates, vice-versa, or fairly even?
Most datastructures have trade-offs between lookups and updates. If you're doing lots of updates then some datastructure that are optimized for lookups won't be so great.
So what are the access characteristics of the data structure, what kind of performance do you need, and what are structural characteristics that it must support (e.g. must allow repeated elements)?
If you need to make random-access modifications: a tree, as in v3's answer. Find the bottom of the range by lookup, then count upwards. Inserting or deleting a node is O(log N). stbuton makes a good point that if you want to allow duplicates (as seems plausible for datestamped events), then you don't want a tree-based set.
If you do not need to make random-access modifications: a sorted array (or vector or whatever). Find the location of the start of the range by binary chop, then count upwards. Inserting or deleting is O(N) in the middle. Duplicates are easy.
Algorithmic performance of lookups is the same in both cases, O(M + log N), where M is the size of the range. But the array uses less memory per entry, and might be faster to count through the range, because after the binary chop it's just forward sequential memory access rather than following pointers.
In both cases you can arrange for insertion at the end to be (amortised) O(1). For the tree, keep a record of the end element at the head, and you get an O(1) bound. For the array, grow it exponentially and you get amortised O(1). This is useful if the changes you make are always or almost-always "add a new event with the current time", since time is (you'd hope) a non-decreasing quantity. If you're using system time then of course you'd have to check, to avoid accidents when the clock resets backwards.
Alternative answer: an SQL table, and let the database optimise how it wants. And Google's BigTable structure is specifically designed to make queries fast, by ensuring that the result of any query is always a consecutive sequence from a pre-prepared index :-)
You want a structure that keeps your objects sorted by date, whenever you insert or remove a new one, and where finding the boundary for the segment of all objects later than or earlier than a given date is easy.
A heap seems the perfect candidate. In practical applications, heaps are simply represented by an array, where all the objects are stored in order. Seeing that sorted array as a heap is simply a way to make insertions of new objects and deletions happen in the right place, and in O(log(n)).
When you have to find all the objects between date A (excluded) and B (included), find the position of A (or the insert position, that is, the position of the earlier element later than A), and the position of B (or the insert position of B), and return all the objects between those positions (which is simply the section between those positions in the array/heap)

Resources