reconstruct a matrix from its row and column sums - performance

Take a n*m matrix filled with floating point values between 0 and 1.
Example:
0 0.5 0 0
0 0.5 1 0.4
0.2 1 0.3 0
0 1 0 0
The goal is to reconstruct the values in this matrix.
I do not have access to this matrix, so I do not know any of its values at the beginning.
There is a function to calculate each value, calc_value(m,n). So a simple way to reconstruct this matrix is to call calc_value(m,n) for each value.
But calling this function is a very expensive operation, so I would like to call this function as few times as possible.
I know the total sum of all values in the matrix, and the sum of values in each individual row and column. (calculating each of these sums is no more expensive than a call to calc_value(m,n))
Using the row and column sums as additional information, how can I fill all values in the matrix with the least amount of calls to calc_value()?
Is it possible with fewer than O(n*m) calls?
There is one additional constraint for the matrix that may help: the values in each row and column will be be monotonous increasing up to a maximum, then monotonous decreasing after that maximum. So a single row could look like this:
0 0.5 0.5 1 1 0.5 0
but not like this:
0 1 0 1 0 1
e.g. more than one distinct local maximum is not allowed
This is the status of my own attempts:
So far I discovered the following inequalities. For a given value of the matrix M(n,m):
M(n,m) <= Min ( sum_of_row_n, sum_of_column_m)
M(n,m) >= sum_of_row_n - sum_of_all_columns_except_m
M(n,m) >= sum_of_column_m - sum_of_all_rows_except_n
But these inequalities do not provide enough information to deduce the value M(n,m), except for some trivial cases.

From what you describe it seems that your matrix has m*n degrees of freedom. The range and monotonicity constraints do not reduce the degrees of freedom. Each sum (row, column, total) removes one degree of freedom - until (m-1)*(n-1) degrees have been reached. (Since the sum of all row sums and the sum of all column sums equals the total sum you can only exploit m+n-1 of these constraints).
So with the given information all you can do is:
calculate the matrix elements a_ij, 1 <= i< m, 1 <=j < n with calc_value(i,j)
compute the missing element of each row/column and a_mn via the row/col sum properties

Related

Maximum Value taken by thief

Consider we have a sacks of gold and thief wants to get the maximum gold. Thief can take the gold to get maximum by,
1) Taking the Gold from contiguous sacks.
2) Thief should take the same amount of gold from all sacks.
N Sacks 1 <= N <= 1000
M quantity of Gold 0 <= M <= 100
Sample Input1:
3 0 5 4 4 4
Output:
16
Explanation:
4 is the minimum amount he can take from the sacks 3 to 6 to get the maximum value of 16.
Sample Input2:
2 4 3 2 1
Output:
8
Explanation:
2 is the minimum amount he can take from the sacks 1 to 4 to get the maximum value of 8.
I approached the problem using subtracting the values from array and taking the transition point from negative to positive, but this doesn't solves the problem.
EDIT: code provided by OP to find the index:
int temp[6];
for(i=1;i<6;i++){
for(j=i-1; j>=0;j--) {
temp[j] = a[j] - a[i];
}
}
for(i=0;i<6;i++){
if(temp[i]>=0) {
index =i;
break;
}
}
The best amount of gold (TBAG) taken from every sack is equal to weight of some sack. Let's put indexes of candidates in a stack in order.
When we meet heavier weight (than stack contains), it definitely continues "good sequence", so we just add its index to the stack.
When we meet lighter weight (than stack top), it breaks some "good sequences" and we can remove heavier candidates from the stack - they will not have chance to be TBAG later. Remove stack top until lighter weight is met, calculate potentially stolen sum during this process.
Note that stack always contains indexes of strictly increasing sequence of weights, so we don't need to consider items before index at the stack top (intermediate AG) in calculation of stolen sum (they will be considered later with another AG value).
for idx in Range(Sacks):
while (not Stack.Empty) and (Sacks[Stack.Peek] >= Sacks[idx]): //smaller sack is met
AG = Sacks[Stack.Pop]
if Stack.Empty then
firstidx = 0
else
firstidx = Stack.Peek + 1
//range_length * smallest_weight_in_range
BestSUM = MaxValue(BestSUM, AG * (idx - firstidx))
Stack.Push(idx)
now check the rest:
repeat while loop without >= condition
Every item is pushed and popped once, so linear time and space complexity.
P.S. I feel that I've ever seen this problem in another formulation...
I see two differents approaches for the moment :
Naive approach: For each pair of indices (i,j) in the array, compute the minimum value m(i,j) of the array in the interval (i,j) and then compute score(i,j) = |j-i+1|*m(i,j). Take then the maximum score over all the pairs (i,j).
-> Complexity of O(n^3).
Less naive approach:
Compute the set of values of the array
For each value, compute the maximum score it can get. For that, you just have to iterate once over all the values of the array. For example, when your sample input is [3 0 5 4 4 4] and the current value you are looking is 3, then it will give you a score of 12. (You'll first find a value of 3 thanks to the first index, and then a score of 12 due to indices from 2 to 5).
Take the maximum over all values found at step 2.
-> Complexity is here O(n*m), since you have to do at most m times the step 2, and the step 2 can be done in O(n).
Maybe there is a better complexity, but I don't have a clue yet.

MATLAB: Fast calculation of Adamic-Adar Score

I have an adjacency matrix of a network, and want to calculate the Adamic-Adar score. It is defined in the following way: For each pair of edges x and y, let z one of their common neighbors, and |z| is the degree of the neighbor.
Now the score is defined as a sum over all common neighbors z:
See for instance this paper, page 3.
I have written a small algorithm for MATLAB, but it uses two for-loops. I am convinced that it can be made much faster, but I dont know how. Could you please indicate ways how to speed this up?
% the entries of nn will always be 0 or 1, and the diagonal will always be 0
nn=[0 0 0 0 1 0; ...
0 0 0 1 1 0; ...
0 0 0 0 1 0; ...
0 1 0 0 0 1; ...
1 1 1 0 0 0; ...
0 0 0 1 0 0];
deg=sum(nn>0);
AAScore=zeros(size(nn));
for ii=1:length(nn)-1
for jj=ii+1:length(nn)
NBs=nn(ii,:).*nn(jj,:);
B=NBs.*deg;
C=B(B>1);
AAScore(ii,jj)=sum(1./log(C));
end
end
AAScore
I would appreciate any suggestion, thank you!
Comparing runtimes
My nn has ~2% entries, so it can be approximated by:
kk=1500;
nn=(rand(kk)>0.98).*(1-eye(kk));
My double-for: 37.404445 seconds.
Divakar's first solution: 58.455826 seconds.
Divakar's updated solution: 22.333510 seconds.
First off, get the indices in the output array that would be set, i.e. non-zeros. Looking at the code, we could notice that we are basically performing AND-ing of each row from input matrix nn against every other row. Given the fact that we are dealing with 1s and 0s, this basically translates to performing matrix-multiplication. So, the non-zeros in the matrix-multiplication result would indicate the places in the sqaured matrix output array where the computation is needed. This should be efficient as we would be iterating over lesser elements. On top of it, since we are getting a upper triangular matrix output, that should further reduce the computations by using a mask with triu(...,1).
Following those ideas, here's an implementation -
[R,C] = find(triu(nn*nn.'>0,1));
vals = sum(1./log(bsxfun(#times,nn(R,:).*nn(C,:),deg)),2);
out=zeros(size(nn));
out(sub2ind(size(out),R,C)) = vals;
For a case with input matrix nn being less-sparsey and really huge, you would feel the bottleneck at computing bsxfun(#times,nn(R,:).*nn(C,:),deg). So, for such a case, you can directly use those R,C indices to perform computation for updating respective selective places in the output array.
Thus, an alternative implementation would be -
[R,C] = find(triu(nn*nn.',1));
out=zeros(size(nn));
for ii =1:numel(R)
out(R(ii),C(ii)) = sum(1./log(nn(R(ii),:).*nn(C(ii),:).*deg));
end
A middle-ground could probably be estabilshed between the two above mentioned approaches by starting off with the R,C indices, then selecting chunks of rows off nn(R,:) and respective ones from nn(C,:) too and using the vectorized implementation across those chunks iteratively with lesser complexity. Setting the chunk size could be tricky, as it would largely depend on the system resources, input array size involved and the sparse-ness of it.

Generating a random matrix with non-static constraints

I would like to generate a random matrix with constraints on both rows and columns in MATLAB. But the problem is I have two parameters for this constraints which are not fix for each element. For explanation, consider the mxn matrix P = [P1 ; P2; ...; Pm], and 2 other vectors lambda and Mu with m and n elements, respectively.
Consider lambda as [lambda(1), lambda(2), ..., lambda(m)] and Mu as [Mu(1), Mu2, ..., Mu(n)]
lamda and Mu should have this constraints:
sum of lambda(s) < sum of Mu(s).
,Now for the random matrix P:
each element of the matrix(P[j,i]) should be equal or greater than zero.
sum of the elements of each row is equal to one (i.e. for the row of j: sigma_i(P[j,i] = 1)
for each column j, sum of the production of each element with the correspond lambda(j) is less than the correspond element in the Mu vector (i.e.Mu(i)). i.e. for the column of i: sigma_j(P[j,i]*lambda(j)) < Mu(i)
I have tried coding all these constraints but because the existence of lambda and Mu vectors, just one of the constraints of 3 or 4 can be feasible. May you please help me for coding this matrix.
Thanks in advance
There could be values of Mu and Lambda that does not allow any value of P[i,j].
For each row-vector v:
Constraint 3 means the values are constrained to the hyper-plane v.1 = 1 (A)
Constraint 4 means the values are constrained to the half-space v.Lambda < m (H), where m is the element of Mu corresponding to the current row.
Constraint 1 does not guarantee that these two constraint generates a non-empty solution space.
To verify that the solution-space is non-empty, the easiest method is by checking each corner of hyper-plane A (<1,0,0,...>, <0,1,0,...>, ...). If at least one of the corners qualify for constraint 4, the solution-space is non-empty.
Having said that; Assuming the solution-space is non-empty, you could generate values matching those constraints by:
Generate random vector with elements 0 ≤ vi ≤ 1.
Scale by dividing by the sum of the elements.
If this vector does not qualify for constraint 4, repeat from step 1.
Once you have n such vectors, combine them as rows into a matrix.
The speed of this algorithm depends on how large volume of hyper-plane A is contained inside the half-space H. If only 1% is contained, it would expected to require 100 iterations for that row.

Compare two arrays of points [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 9 years ago.
Improve this question
I'm trying to find a way to find similarities in two arrays of different points. I drew circles around points that have similar patterns and I would like to do some kind of auto comparison in intervals of let's say 100 points and tell what coefficient of similarity is for that interval. As you can see it might not be perfectly aligned also so point-to-point comparison would not be a good solution also (I suppose). Patterns that are slightly misaligned could also mean that they are matching the pattern (but obviously with a smaller coefficient)
What similarity could mean (1 coefficient is a perfect match, 0 or less - is not a match at all):
Points 640 to 660 - Very similar (coefficient is ~0.8)
Points 670 to 690 - Quite similar (coefficient is ~0.5-~0.6)
Points 720 to 780 - Let's say quite similar (coefficient is ~0.5-~0.6)
Points 790 to 810 - Perfectly similar (coefficient is 1)
Coefficient is just my thoughts of how a final calculated result of comparing function could look like with given data.
I read many posts on SO but it didn't seem to solve my problem. I would appreciate your help a lot. Thank you
P.S. Perfect answer would be the one that provides pseudo code for function which could accept two data arrays as arguments (intervals of data) and return coefficient of similarity.
Click here to see original size of image
I also think High Performance Mark has basically given you the answer (cross-correlation). In my opinion, most of the other answers are only giving you half of what you need (i.e., dot product plus compare against some threshold). However, this won't consider a signal to be similar to a shifted version of itself. You'll want to compute this dot product N + M - 1 times, where N, M are the sizes of the arrays. For each iteration, compute the dot product between array 1 and a shifted version of array 2. The amount you shift array 2 increases by one each iteration. You can think of array 2 as a window you are passing over array 1. You'll want to start the loop with the last element of array 2 only overlapping the first element in array 1.
This loop will generate numbers for different amounts of shift, and what you do with that number is up to you. Maybe you compare it (or the absolute value of it) against a threshold that you define to consider two signals "similar".
Lastly, in many contexts, a signal is considered similar to a scaled (in the amplitude sense, not time-scaling) version of itself, so there must be a normalization step prior to computing the cross-correlation. This is usually done by scaling the elements of the array so that the dot product with itself equals 1. Just be careful to ensure this makes sense for your application numerically, i.e., integers don't scale very well to values between 0 and 1 :-)
i think HighPerformanceMarks's suggestion is the standard way of doing the job.
a computationally lightweight alternative measure might be a dot product.
split both arrays into the same predefined index intervals.
consider the array elements in each intervals as vector coordinates in high-dimensional space.
compute the dot product of both vectors.
the dot product will not be negative. if the two vectors are perpendicular in their vector space, the dot product will be 0 (in fact that's how 'perpendicular' is usually defined in higher dimensions), and it will attain its maximum for identical vectors.
if you accept the geometric notion of perpendicularity as a (dis)similarity measure, here you go.
caveat:
this is an ad hoc heuristic chosen for computational efficiency. i cannot tell you about mathematical/statistical properties of the process and separation properties - if you need rigorous analysis, however, you'll probably fare better with correlation theory anyway and should perhaps forward your question to math.stackexchange.com.
My Attempt:
Total_sum=0
1. For each index i in the range (m,n)
2. sum=0
3. k=Array1[i]*Array2[i]; t1=magnitude(Array1[i]); t2=magnitude(Array2[i]);
4. k=k/(t1*t2)
5. sum=sum+k
6. Total_sum=Total_sum+sum
Coefficient=Total_sum/(m-n)
If all values are equal, then sum would return 1 in each case and total_sum would return (m-n)*(1). Hence, when the same is divided by (m-n) we get the value as 1. If the graphs are exact opposites, we get -1 and for other variations a value between -1 and 1 is returned.
This is not so efficient when the y range or the x range is huge. But, I just wanted to give you an idea.
Another option would be to perform an extensive xnor.
1. For each index i in the range (m,n)
2. sum=1
3. k=Array1[i] xnor Array2[i];
4. k=k/((pow(2,number_of_bits))-1) //This will scale k down to a value between 0 and 1
5. sum=(sum+k)/2
Coefficient=sum
Is this helpful ?
You can define a distance metric for two vectors A and B of length N containing numbers in the interval [-1, 1] e.g. as
sum = 0
for i in 0 to 99:
d = (A[i] - B[i])^2 // this is in range 0 .. 4
sum = (sum / 4) / N // now in range 0 .. 1
This now returns distance 1 for vectors that are completely opposite (one is all 1, another all -1), and 0 for identical vectors.
You can translate this into your coefficient by
coeff = 1 - sum
However, this is a crude approach because it does not take into account the fact that there could be horizontal distortion or shift between the signals you want to compare, so let's look at some approaches for coping with that.
You can sort both your arrays (e.g. in ascending order) and then calculate the distance / coefficient. This returns more similarity than the original metric, and is agnostic towards permutations / shifts of the signal.
You can also calculate the differentials and calculate distance / coefficient for those, and then you can do that sorted also. Using differentials has the benefit that it eliminates vertical shifts. Sorted differentials eliminate horizontal shift but still recognize different shapes better than sorted original data points.
You can then e.g. average the different coefficients. Here more complete code. The routine below calculates coefficient for arrays A and B of given size, and takes d many differentials (recursively) first. If sorted is true, the final (differentiated) array is sorted.
procedure calc(A, B, size, d, sorted):
if (d > 0):
A' = new array[size - 1]
B' = new array[size - 1]
for i in 0 to size - 2:
A'[i] = (A[i + 1] - A[i]) / 2 // keep in range -1..1 by dividing by 2
B'[i] = (B[i + 1] - B[i]) / 2
return calc(A', B', size - 1, d - 1, sorted)
else:
if (sorted):
A = sort(A)
B = sort(B)
sum = 0
for i in 0 to size - 1:
sum = sum + (A[i] - B[i]) * (A[i] - B[i])
sum = (sum / 4) / size
return 1 - sum // return the coefficient
procedure similarity(A, B, size):
sum a = 0
a = a + calc(A, B, size, 0, false)
a = a + calc(A, B, size, 0, true)
a = a + calc(A, B, size, 1, false)
a = a + calc(A, B, size, 1, true)
return a / 4 // take average
For something completely different, you could also run Fourier transform using FFT and then take a distance metric on the returning spectra.

Can we compute this in less than O(n*n) ...( nlogn or n)

This is a question asked to me by a very very famous MNC. The question is as follows ...
Input an 2D N*N array of 0's and 1's. If A(i,j) = 1, then all the values corresponding to the ith row and the jth column are going to be 1. If there is a 1 already, it remains as a 1.
As an example , if we have the array
1 0 0 0 0
0 1 1 0 0
0 0 0 0 0
1 0 0 1 0
0 0 0 0 0
we should get the output as
1 1 1 1 1
1 1 1 1 1
1 1 1 1 0
1 1 1 1 1
1 1 1 1 0
The input matrix is sparsely populated.
Is this possible in less than O(N^2)?
No additional space is provided was another condition. I would like to know if there's a way to achieve the complexity using a space <= O(N).
P.S : I don't need answers that give me a complexity of O(N*N). This is not a homework problem. I have tried much and couldn't get a proper solution and thought I could get some ideas here.Leave the printing aside for the complexity
My rough idea was to may be dynamically eliminate the number of elements traversed restricting them to around 2N or so. But I couldn't get a proper idea.
In the worst case, you may need to toggle N * N - N bits from 0 to 1 to generate the output. It would seem you're pretty well stuck with O(N*N).
I would imagine that you can optimize it for the best case, but I'm tempted to say that your worst case is still O(N*N): Your worst case will be an array of all 0s, and you will have to examine every single element.
The optimization would involve skipping a row or column as soon as you found a "1" (I can provide details, but you said you don't care about O(N*N)", but unless you have metadata to indicate that an entire row/column is empty, or unless you have a SIMD-style way to check multiple fields at once (say, if every row is aligned by 4, and you can read 32 bits worth data, or if your data is in form of a bitmask), you will always have to deal with the problem of an all-zero array.
Clearly, nor the output matrix nor its negated version has to be sparse (take a matrix with half of the first row set to 1 and anything else to 0 to see), so time depends on what format you are allowed to use for the output. (I'm assuming the input is a list of elements or something equivalent, since otherwise you couldn't take advantage of the matrix being sparse.)
A simple solution for O(M+N) space and time (M is the number of ones in the input matrix): take two arrays of length N filled with ones, iterate through all ones in the input, and for each drop the X coordinate from the first array and the Y from the second one. The output is the two arrays, which clearly define the result matrix: its (X,Y) coordinate is 0 iff the X coordinate of the first array and the Y coordinate of the second are 0.
Update: depending on the language, you could use some trickery to return a normal 2D array by referencing the same row multiple times. For example in PHP:
// compute N-length arrays $X and $Y which have 1 at the column
// and row positions which had no 1's in the input matrix
// this is O(M+N)
$result = array();
$row_one = array_fill(0,N,1);
for ($i=0; $i<N; $i++) {
if ($Y[$i]) {
$result[$i] = &$row_one;
} else {
$result[$i] = &$X;
}
}
return $result;
Of course this is a normal array only as long as you don't try to write it.
Since every entry of the matrix has to be checked, your worst case is always going to be N*N.
With a small 2*N extra storage, you can perform the operation in O(N*N). Just create a mask for each row and another for each column - scan the array and update the masks as you go. Then scan again to populate the result matrix based on the masks.
If you're doing something where the input matrix is changing, you could store a count of non-zero entries for each row and column of the input (rather than a simple mask). Then when an entry in the input changes, you update the counts accordingly. At that point, I would drop the output matrix entirely and query the masks/counts directly rather than even maintaining the output matrix (which could also be updated as thing change in less than NN time if you really wanted to keep it around). So loading the initial matrix would still be O(NN) but updates could be much less.
The input matrix may be sparse, but unless you can get it in a sparse format (i.e. a list of (i,j) pairs that are initially set), just reading your input will consume Ω(n^2) time. Even with sparse input, it's easy to end up with O(n^2) output to write. As a cheat, if you were allowed to output a list of set rows and set columns, then you could get down to linear time. There's no magic to be had when your algorithm actually has to produce a result more substantial than 'yes' or 'no'.
Mcdowella's comment on another answer suggests another alternative input format: run-length encoding. For a sparse input, that clearly requires no more than O(n) time to read it (consider how many transitions there are between 0 and 1). However, from there it breaks down. Consider an input matrix structured as follows:
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
. .
. .
. .
That is, alternating 0 and 1 on the first row, 0 everywhere else. Clearly sparse, since there are n/2 ones in total. However, the RLE output has to repeat this pattern in every row, leading to O(n^2) output.
You say:
we should get the output as...
So you need to output the entire matrix, which has N^2 elements. This is O(N*N).
The problem itself is not O(N*N): you dont have to compute and store the entire matrix: you only need two vectors, L and C, each of size N:
L[x] is 1 if line x is a line of ones, 0 otherwise;
C[x] is 1 if line x is a line of ones, 0 otherwise;
You can construct these vectors in O(N), because the initial matrix is sparse; your input data will not be a matrix, but a list containing the coordinates(line,column) of each non-zero element. While reading this list, you set L[line]=1 and C[column]=1, and the problem is solved: M[l,c] == 1 if L[l]==1 OR C[c]==1
Hii guys ,
thanks to the comment from mb14 i think i could get it solved in less than O(NN) time...
The worst would take O(NN)...
Actually , we have the given array suppose
1 0 0 0 1
0 1 0 0 0
0 1 1 0 0
1 1 1 0 1
0 0 0 0 0
Lets have 2 arrays of size N (this would be the worst case) ... One is dedicated for indexing rows and other columns...
Put those with a[i][1] = 0 in one array and then a[1][j] =0 in another..
Then take those values only and check for the second row and colums...In this manner , we get the values of rows and colums where there are only 0;'s entirely...
The number of values in the row array gives number of 0's in the result array and the points a[row-array values][column array value] gives you those points ....
We could solve it in below O(NN) and worst is O(NN) ... As we can seee , the arrays ( of size N) diminishes ....
I did this for a few arrays and got the result for all of them ... :)
Please correct me if i am wrong anywhere...
Thanx for all your comments guys...You are all very helpful and i did learn quite a few things along the way ... :)
There is clearly up to O(N^2) work to do. In the matrix
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
all bits have to be set to 1, and N*(N-1) are not set to one (20, in this 5x5 case).
Conversely, you can come up with an algorithm that always does it in O(N^2) time: sum along the top row and let column, and if the row or column gets a nonzero answer, fill in the entire row or column; then solve the smaller (N-1)x(N-1) problem.
So there exist cases that must take at least N^2 and any case can be solved in N^2 without extra space.
If your matrix is sparse, the complexity depends much on the input encoding and its in particular not well measured in N N2 or something like that but in terms of N your input complexity Min and your output complexity Mout. I'd expect something like O(N + Min + Mout) but much depending on the encoding and the tricks that you can play with it.
That depends entirely of your input data structure. If you pass your matrix (1s and 0s) as a 2D array you need to traverse it and that is O(N^2). But as your data is sparse, if you only pass the 1's as input, you can do it so the ouptut is O(M), where M is not the number of cells but the number of 1 cells. It would be something similar to this (pseudocode below):
list f(list l) {
list rows_1;
list cols_1;
for each elem in l {
rows_1[elem.row] = 1;
cols_1[elem.col] = 1;
}
list result;
for each row in rows_1 {
for each col in cols_1 {
if (row == 1 || col == 1) {
add(result, new_elem(row, col));
}
}
}
return result;
}
Don't fill the center of the matrix when you're checking values. As you go through the elements, when you have 1 set the corresponding element in the first row and the first column. Then go back and fill down and across.
edit: Actually, this is the same as Andy's.
It depends on your data structure.
There are only two possible cases for rows:
A row i is filled with 1's if there is an element (i,_) in the input
All other rows are the same: i.e. the j-th element is 1 iff there is an element (_,j) in the input.
Hence the result could be represented compactly as an array of references to rows. Since we only need two rows the result would also only consume O(N) memory. As an example this could be implemented in python as follows:
def f(element_list, N):
A = [1]*N
B = [0]*N
M = [B]*N
for row, col in element_list:
M[row] = A
B[col] = 1
return M
A sample call would be
f([(1,1),(2,2),(4,3)],5)
with the result
[[0, 1, 1, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [0, 1, 1, 1, 0], [1, 1, 1, 1, 1]]
The important point is that the arrays are not copied here, i.e. M[row]=A is just an assignment of a reference. Hence the complexity is O(N+M), where M is the length of the input.
#include<stdio.h>
include
int main()
{
int arr[5][5] = { {1,0,0,0,0},
{0,1,1,0,0},
{0,0,0,0,0},
{1,0,0,1,0},
{0,0,0,0,0} };
int var1=0,var2=0,i,j;
for(i=0;i<5;i++)
var1 = var1 | arr[0][i];
for(i=0;i<5;i++)
var2 = var2 | arr[i][0];
for(i=1;i<5;i++)
for(j=1;j<5;j++)
if(arr[i][j])
arr[i][0] = arr[0][j] = 1;
for(i=1;i<5;i++)
for(j=1;j<5;j++)
arr[i][j] = arr[i][0] | arr[0][j];
for(i=0;i<5;i++)
arr[0][i] = var1;
for(i=0;i<5;i++)
arr[i][0] = var2;
for(i=0;i<5;i++)
{
printf("\n");
for(j=0;j<5;j++)
printf("%d ",arr[i][j]);
}
getch();
}
This program makes use of only 2 4 temporary variables (var1,var2,i and j) and hence runs in constant space with time complexity O(n^2).. I Think it is not possible at all to solve this problem in < O(n^2).

Resources