I am new to Processing so this question might be ...
I want to add drag and drop facility to the graphics I generate.
I found Processing - Mouse Functions which explains how to add dragging to a specific object yet I am looking for a general solution in which i dont have to add the dragging methods for each object i want to be able to drag around.
thanks
One option is to encapsulate the functionality into a class you can extend.
If your graphics extend such a class, then they also become "draggable".
Here's a minimal example where the graphics are simply boxes, but extending the "draggable behaviour":
int nb = 3;
Box[] boxes = new Box[nb];//a list of draggable graphics, currently empty
void setup(){
size(400,400);
for(int i = 0 ; i < nb; i++){
boxes[i] = new Box();//populate the list with actual objects
boxes[i].x = 10+110*i;//and setup their coordinates
boxes[i].y = 100;//and dimenensions
boxes[i].w = boxes[i].h = 100;
}
}
void draw(){
background(0);//clear
for(int i = 0 ; i < nb; i++){
boxes[i].update(mouseX,mouseY);//update the internal state(if it's over or not, calculate drag offset, etc.)
boxes[i].draw();//render each graphics element on screen
}
}
void mouseDragged(){//if the mouse is dragged
for(int i = 0 ; i < nb; i++){//for each graphics element
if(boxes[i].isOver) {//if it's over
boxes[i].x = mouseX-boxes[i].offx;//than drag based on the mouse position
boxes[i].y = mouseY-boxes[i].offy;//but take te mouse offset in relation to each object into account
}
}
}
class Draggable{//a generic draggable template with no graphics to display
float x,y,w,h,offx,offy;//position, dimensions and x,y offset to drag
boolean isOver;//is the cursor over the bounding box of this object ?
void update(int mx,int my){//let's work that out based on the mouse x and y coordinates
isOver = ((mx >= x && mx <= x+w) && (my >= y && my <= y+h));//if it's within bounds on x and y axis, then we're in the over state
if(isOver){//if we're in the over state we can also update the mouse drag offsets
offx = mx-x;
offy = my-y;
}
}
}
class Box extends Draggable{
void draw(){
fill(isOver ? 127 : 255);
rect(x,y,w,h);
}
}
This would be a fun little opportunity to test an OOP concept: polymorphism
int nb = 6;
Draggable[] boxes = new Draggable[nb];//a list of draggable graphics, currently empty
void setup(){
size(400,400);
for(int i = 0 ; i < nb; i++){
boxes[i] = (random(1.0) > .5) ? new Box() : new Blob();//populate the list with actual objects
boxes[i].x = 10+110*i;//and setup their coordinates
boxes[i].y = 100;//and dimenensions
boxes[i].w = boxes[i].h = 100;
}
}
void draw(){
background(0);//clear
for(int i = 0 ; i < nb; i++){
boxes[i].update(mouseX,mouseY);//update the internal state(if it's over or not, calculate drag offset, etc.)
boxes[i].draw();//render each graphics element on screen
}
}
void mouseDragged(){//if the mouse is dragged
for(int i = 0 ; i < nb; i++){//for each graphics element
if(boxes[i].isOver) {//if it's over
boxes[i].x = mouseX-boxes[i].offx;//than drag based on the mouse position
boxes[i].y = mouseY-boxes[i].offy;//but take te mouse offset in relation to each object into account
}
}
}
class Draggable{//a generic draggable template with no graphics to display
float x,y,w,h,offx,offy;//position, dimensions and x,y offset to drag
boolean isOver;//is the cursor over the bounding box of this object ?
void update(int mx,int my){//let's work that out based on the mouse x and y coordinates
isOver = ((mx >= x && mx <= x+w) && (my >= y && my <= y+h));//if it's within bounds on x and y axis, then we're in the over state
if(isOver){//if we're in the over state we can also update the mouse drag offsets
offx = mx-x;
offy = my-y;
}
}
void draw(){}//empty implementation to be overwritten by a subclass
}
class Box extends Draggable{
void draw(){
fill(isOver ? 127 : 255);
rect(x,y,w,h);
}
}
class Blob extends Draggable{
void draw(){
fill(isOver ? 127 : 255);
ellipse(x,y,w,h);
}
}
This is an idea of how implement this, but there are multiple ways of achieving this.
Have a look at the Processing OOP tutorial or the more in depth Java OOP one
For example the above could be achieved using Interfaces or an AbstractClass.
It's up to your goals and restrictions what the best solution will be.
Related
So, i'm sorry if this is a weird or stupid question but I genuinely couldn't find an answer. So, the thing is I'm trying to do a visual representation of the multiplication tables, so i divide a circle in a certain number of "slices", for example I divide it in 10. Then I join each point with its product, for example for the 2 times table i make a line between 1 and 2, another one between 2 and 4, 3 and 6 and so on...
The thing is, if i surpass a certain amount of "slices" i can clearly see Processing drawing each one of the lines one by one. I wanted to progressively change the number of slices so you can see how does it evolve, but then the lines would just have to "appear" or change instantaneously since the "animation" makes no sense if you see it drawing every line. Is there a way I can improve the speed of the program, or just make it show all lines at once?
For reference, this is how i kinda want it to look like:
YouTube video
This is the code i'm using (with the ControlP5 library and soooo poorly optimized):
import controlP5.*;
ControlP5 cp5;
Knob myKnobA;
Knob myKnobB;
int ncosas = 30;
float sumangle = (2*PI)/ncosas;
float angle = HALF_PI + PI + sumangle;
int radius = 100;
int counter = 1;
int sumar = 15;
int tablade = 2;
int prueba = 30;
void setup(){
size(400,400);
background(255);
textAlign(CENTER,CENTER);
fill(0);
stroke(0);
textSize(8);
cp5 = new ControlP5(this);
myKnobA = cp5.addKnob("Servo")
.setRange(1,120)
.setValue(1)
.setPosition(20,20)
.setRadius(30)
.setDragDirection(Knob.HORIZONTAL)
.setCaptionLabel("N")
.setColorCaptionLabel(0)
;
myKnobB = cp5.addKnob("TablaD")
.setRange(1,50)
.setValue(1)
.setPosition(20,120)
.setRadius(30)
.setDragDirection(Knob.HORIZONTAL)
.setCaptionLabel("Tabla de")
.setColorCaptionLabel(0)
;
//translate(height/2,width/2);
//line(0,0,radius*sin(radians(prueba)),radius*cos(radians(prueba)));
}
void draw(){
if(counter <= ncosas){
dibujar();
}
}
void Servo(int theValue){
background(255);
counter = 1;
ncosas = theValue;
sumangle = (2*PI)/ncosas;
angle = HALF_PI + PI + sumangle;
}
void TablaD(int theValue){
background(255);
counter = 1;
tablade = theValue;
angle = HALF_PI + PI + sumangle;
}
void dibujar(){
pushMatrix();
translate(width*2.5/4,height/2);
circle(radius*sin(angle),radius*cos(angle),2);
//if(counter*tablade<=ncosas){
line(radius*sin(angle),radius*cos(angle),radius*sin((counter*tablade*sumangle)+(angle-counter*sumangle)),radius*cos((counter*tablade*sumangle)+(angle-counter*sumangle)));
//}
println(counter*tablade + " -> " + counter*tablade*degrees(sumangle));
text(counter,(radius+sumar)*sin(angle),(radius+sumar)*cos(angle));
angle += sumangle;
counter++;
popMatrix();
}
void keyPressed(){
if (key == 'D' || key == 'd'){
Servo(int(myKnobA.getValue())+1);
myKnobA.setValue(int(myKnobA.getValue())+1);
}
if (key == 'A' || key == 'a'){
Servo(int(myKnobA.getValue())-1);
myKnobA.setValue(int(myKnobA.getValue())-1);
}
if (key == 'W' || key == 'w'){
TablaD(int(myKnobB.getValue())+1);
myKnobB.setValue(int(myKnobB.getValue())+1);
}
if (key == 'S' || key == 's'){
TablaD(int(myKnobB.getValue())-1);
myKnobB.setValue(int(myKnobB.getValue())-1);
}
}
Thank you in advance
To expand on what John Coleman said, you need to execute the dibujar() command multiple times in draw(). In Processing, the canvas is rendered at the end of the draw() loop, so if you draw multiple lines in draw(), they will all appear at the same time.
This will involve some kind of loop. If you want to draw the entire multiplication circle at once, you could replace if with while in the draw() loop:
void draw(){
while (counter <= ncosas){
dibujar();
}
}
I believe this will draw the entire multiplication circle in a single frame. You can then adjust the knobs to change the parameters of the multiplication circle, and the multiplication circle will change as you adjust the knobs.
So I made the Sierpinski carpet fractal in processing using a Square data type which draw a square and has a function generate() that generates 9 equal squares out of itself and returns an ArrayList of (9-1)=8 squares removing the middle one (it is not added to the returned ArrayList) in order to generate the Sierpinski carpet.
Here is the class Square -
class Square {
PVector pos;
float r;
Square(float x, float y, float r) {
pos = new PVector(x, y);
this.r = r;
}
void display() {
noStroke();
fill(120,80,220);
rect(pos.x, pos.y, r, r);
}
ArrayList<Square> generate() {
ArrayList<Square> rects = new ArrayList<Square>();
float newR = r/3;
for (int i=0; i<3; i++) {
for (int j=0; j<3; j++) {
if (!(i==1 && j==1)) {
Square sq = new Square(pos.x+i*newR, pos.y+j*newR, newR);
rects.add(sq);
}
}
}
return rects;
}
}
This is the main sketch which moves forward the generation on mouse click -
ArrayList<Square> current;
void setup() {
size(600, 600);
current = new ArrayList<Square>();
current.add(new Square(0, 0, width));
}
void draw() {
background(255);
for (Square sq : current) {
sq.display();
}
}
void mousePressed() {
ArrayList<Square> next = new ArrayList<Square>();
for(Square sq: current) {
ArrayList<Square> rects = sq.generate();
next.addAll(rects);
}
current = next;
}
The problem :
The output that I am getting has very thin white lines which are not supposed to be there :
First generation -
Second generation -
Third generation -
My guess is that these lines are just the white background that shows up due to the calculations in generate() being off by a pixel or two. However I am not sure about how to get rid of these. Any help would be appreciated!
Here's a smaller example that demonstrates your problem:
size(1000, 100);
noStroke();
background(0);
float squareWidth = 9.9;
for(float squareX = 0; squareX < width; squareX += squareWidth){
rect(squareX, 0, squareWidth, height);
}
Notice that the black background is showing through the squares. Please try to post this kind of minimal example instead of your whole sketch in the future.
Anyway, there are three ways to fix this:
Option 1: Call the noSmooth() function.
By default, Processing uses anti-aliasing to make your drawings look smoother. Usually this is a good thing, but it can also add some fuzziness to the edges of shapes. If you disable anti-aliasing, your shapes will be more clear and you won't see the artifacts.
Option 2: Use a stroke with the same color as the fill.
As you've already discovered, this draws an outline around the shape.
Option 3: Use int values instead of float values.
You're storing your coordinates and sizes in float values, which can contain decimal places. The problem is, the screen (the actual pixels on your monitor) don't have decimal places (there is no such thing as half a pixel), so they're represented by int values. So when you convert a float value to an int, the decimal part is dropped, which can cause small gaps in your shapes.
If you just switch to using int values, the problem goes away:
size(1000, 100);
noStroke();
background(0);
int squareWidth = 10;
for(int squareX = 0; squareX < width; squareX += squareWidth){
rect(squareX, 0, squareWidth, height);
}
My pixels are updating every frame causing the effect to be re-applied to the previous frame. How can i make this effect only happen once and without using noLoop(). I just want there to be a large circle around the triangle. Please help. Thanks.
Here is the whole program. I set the frameRate to 1 so you can see the problem easier:
boolean up;
int x =-300;
int y =-300;
void setup()
{
size(600, 600);
frameRate(1);
}
void draw()
{
pushMatrix();
translate(300, 300);
float a = atan2(mouseY-300, mouseX-300);
rotate(a);
for (int i = x; i < x+width; i+=40)
for (int j = y; j < y+height; j+=40)
rect(i, j, 40, 40);
loadPixels();
for (int i = 0; i < pixels.length; i++)
{
x = i%width;
y = i/width;
color c = pixels[x+y*width];
float d = dist(x, y, width/2, height/2);
pixels[x+y*width] = color(brightness(c) - d);
}
updatePixels();
popMatrix();
fill(255, 0, 0);
triangle(280, 300, 300, 200, 320, 300);
if (up)
{
x += sin(a)*5;
y += cos(a)*5;
}
}
void keyPressed()
{
if (key=='w')up=true;
}
void keyReleased()
{
if (key=='w')up=false;
}
Re-draw everything in one frame.
Remember before you use your filter, you must undo the filter effects of the last time.
The usual ordering in your draw() function goes as follows:
Add a background / clear all the objects you added in the last frame & clearing the filter of your last frame.
Add your objects.
Lay your filter on top.
Try to refrain from doing any graphic related stuff in setup, hence it will be destroyed by this draw() function - paradigma.
This should already suffice as your answer. Quick note:
When you work with for e.g. a 3D - Shadow filter, applying the filter can take a very long time. Instead we try to store as many calculations we did on the previous frame, so we don't need to calculate everything over again. The same goes for the objects-layer. You don't want to calculate the shortest-path for a minion every frame, instead you calculate the shortest path once and only recalculate it, when something changes: Position of a box, player position, etc..
If you want just use your filter and move fluently around update your effect like this:
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
color c = pixels[x+y*width];
float d = dist(x, y, width/2, height/2);
pixels[x+y*width] = color(brightness(c) - d);
}
}
You had unnecessary calculation that consume lot of CPU resources. Redrawing background also helps to make clearer animation.
If you want generate this effect only once and then apply it. PGraphics could achieve something similar.
I'm currently making an application using processing intended to take an image and apply 8bit style processing to it: that is to make it look pixelated. To do this it has a method that take a style and window size as parameters (style is the shape in which the window is to be displayed - rect, ellipse, cross etc, and window size is a number between 1-10 squared) - to produce results similar to the iphone app pxl ( http://itunes.apple.com/us/app/pxl./id499620829?mt=8 ). This method then counts through the image's pixels, window by window averages the colour of the window and displays a rect(or which every shape/style chosen) at the equivalent space on the other side of the sketch window (the sketch when run is supposed to display the original image on the left mirror it with the processed version on the right).
The problem Im having is when drawing the averaged colour rects, the order in which they display becomes skewed..
Although the results are rather amusing, they are not what I want. Here the code:
//=========================================================
// GLOBAL VARIABLES
//=========================================================
PImage img;
public int avR, avG, avB;
private final int BLOCKS = 0, DOTS = 1, VERTICAL_CROSSES = 2, HORIZONTAL_CROSSES = 3;
public sRGB styleColour;
//=========================================================
// METHODS FOR AVERAGING WINDOW COLOURS, CREATING AN
// 8 BIT REPRESENTATION OF THE IMAGE AND LOADING AN
// IMAGE
//=========================================================
public sRGB averageWindowColour(color [] c){
// RGB Variables
float r = 0;
float g = 0;
float b = 0;
// Iterator
int i = 0;
int sizeOfWindow = c.length;
// Count through the window's pixels, store the
// red, green and blue values in the RGB variables
// and sum them into the average variables
for(i = 0; i < c.length; i++){
r = red (c[i]);
g = green(c[i]);
b = blue (c[i]);
avR += r;
avG += g;
avB += b;
}
// Divide the sum of the red, green and blue
// values by the number of pixels in the window
// to obtain the average
avR = avR / sizeOfWindow;
avG = avG / sizeOfWindow;
avB = avB / sizeOfWindow;
// Return the colour
return new sRGB(avR,avG,avB);
}
public void eightBitIT(int style, int windowSize){
img.loadPixels();
for(int wx = 0; wx < img.width; wx += (sqrt(windowSize))){
for(int wy = 0; wy < img.height; wy += (sqrt(windowSize))){
color [] tempCols = new color[windowSize];
int i = 0;
for(int x = 0; x < (sqrt(windowSize)); x ++){
for(int y = 0; y < (sqrt(windowSize)); y ++){
int loc = (wx+x) + (y+wy)*(img.width-windowSize);
tempCols[i] = img.pixels[loc];
// println("Window loc X: "+(wx+(img.width+5))+" Window loc Y: "+(wy+5)+" Window pix X: "+x+" Window Pix Y: "+y);
i++;
}
}
//this is ment to be in a switch test (0 = rect, 1 ellipse etc)
styleColour = new sRGB(averageWindowColour(tempCols));
//println("R: "+ red(styleColour.returnColourScaled())+" G: "+green(styleColour.returnColourScaled())+" B: "+blue(styleColour.returnColourScaled()));
rectMode(CORNER);
noStroke();
fill(styleColour.returnColourScaled());
//println("Rect Loc X: "+(wx+(img.width+5))+" Y: "+(wy+5));
ellipse(wx+(img.width+5),wy+5,sqrt(windowSize),sqrt(windowSize));
}
}
}
public PImage load(String s){
PImage temp = loadImage(s);
temp.resize(600,470);
return temp;
}
void setup(){
background(0);
// Load the image and set size of screen to its size*2 + the borders
// and display the image.
img = loadImage("oscilloscope.jpg");
size(img.width*2+15,(img.height+10));
frameRate(25);
image(img,5,5);
// Draw the borders
strokeWeight(5);
stroke(255);
rectMode(CORNERS);
noFill();
rect(2.5,2.5,img.width+3,height-3);
rect(img.width+2.5,2.5,width-3,height-3);
stroke(255,0,0);
strokeWeight(1);
rect(5,5,9,9); //window example
// process the image
eightBitIT(BLOCKS, 16);
}
void draw(){
//eightBitIT(BLOCKS, 4);
//println("X: "+mouseX+" Y: "+mouseY);
}
This has been bugging me for a while now as I can't see where in my code im offsetting the coordinates so they display like this. I know its probably something very trivial but I can seem to work it out. If anyone can spot why this skewed reordering is happening i would be much obliged as i have quite a lot of other ideas i want to implement and this is holding me back...
Thanks,
In the program below, I try to change the pixel colors form a image with the click of the mouse, however, I'm trying to return to the original image with the second click but I haven't been able to find the rigth argument to do it...
PImage pic;
void setup(){
pic=loadImage("road.jpg"); // Loading the image from a folder "date" attached to the sketch
size (pic.width,pic.height);
image(pic,0,0);
}
void draw(){
}
void mousePressed(){
loadPixels();
pic.loadPixels();
for (int y = 0; y < height; y++ ) {
for (int x = 0; x < width; x++ ) {
int loc = x + y*width;
if(red(pixels[loc]) >170 && red(pixels[loc])<215){
pixels[loc]=color(187,0,0); //changing the pixels color from red to green
}
}
}
for (int y = 0; y < height; y++ ) {
for (int x = 0; x < width; x++ ) {
int loc = x + y*width;
if(green(pixels[loc]) >120 && green(pixels[loc])<160){
pixels[loc]=color(0,192,0); //changing the pixels color form green to red
}
}
}
// I belive that here I have to add an argument that returns to the original image
updatePixels();
}
I will appreciate any help.
Thanks.
What I typically do for this sort of thing is to create /two/ images, one being the file (target) and the other being a blank Image.
PImage target;
PImage destination;
target = loadImage("file.jpg");
destination = createImage(target.width, target.height, RGB);
And then I copy the target's information into the destination's pixels. If I want to switch back, I can just call target; I'm able to freely swap back and forth by saving them as two separate images.
For an example, check out a sketch of mine on openprocesing: http://openprocessing.org/visuals/?visualID=49301