Will an AVL tree ever need multiple rebalances? [duplicate] - data-structures

This question already has answers here:
More than one rotation needed to balance an AVL Tree?
(2 answers)
Closed 8 years ago.
Assume I have a balanced AVL tree and after an ADD, it becomes unbalanced. Will an AVL tree always be rebalanced by a one single or one double rotation, or is there a case that would require more rotations?

A single rebalancing will always be sufficient to restore the balance invariant, assuming the balance invariant was satisfied prior to the insertion.
The AVL invariant is that any node has child depths which differ by at most 1. After a single insertion, the child depths can differ by at most 2. A single traversal down the path to the inserted node, rotating as necessary, is capable of resolving the imbalance.

Related

Tree data structure [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 2 months ago.
This post was edited and submitted for review 2 months ago and failed to reopen the post:
Needs details or clarity Add details and clarify the problem by editing this post.
Improve this question
A b tree is a generalized binary tree . How ?
A binary tree is a tree in which each node has at most 2 children. A b-tree of order m is a tree in which
Each node has at most m children.
Each internal node (not the root or a leaf) has at least ⌈m/2⌉ children. (⌈x⌉ means the ceiling of x, the least integer not less than x.)
Each non-leaf node (parent and all internal nodes) has at least 2 children.
All leaves appear on the same level.
(B tree nodes also have keys, but this is not directly part of the tree structure and does not concern us in this question.)
So some b-trees are binary trees. Every b-tree of order 2 is a binary tree. Some b-trees of higher order are binary trees if they happen not to have any nodes with more than 2 children.
b-trees of orders 5 and greater could be binary trees only if they are just a parent and two children, which are leaves. If a tree of order 5 or greater had any internal nodes, that node would be required to have at least ⌈5/2⌉ = 3 children, so it could not be a binary tree. b-trees of orders 3 and 4 could have internal nodes and still be binary trees.
The concepts of binary tree and b-tree overlap, but neither is a subset of the other in the sense that all requirements of one would satisfy the other. For the most part in programming, you are not going to mix uses of routines for binary trees and other routines for b-trees based on just how the current tree happens to be filled and arranged; on a particular set of data being managed, you would be working entirely with binary tree routines or entirely with b-tree routines.

Best 'order' traversal to copy a balanced binary tree into an AVL tree with minimum rotations

I have two binary trees. One, A which I can access its nodes and pointers (left, right, parent) and B which I don't have access to any of its internals. The idea is to copy A into B by iterating over the nodes of A and doing an insert into B. B being an AVL tree, is there a traversal on A (preorder, inorder, postorder) so that there is a minimum number of rotations when inserting elements to B?
Edit:
The tree A is balanced, I just don't know the exact implementation;
Iteration on tree A needs to be done using only pointers (the programming language is C and there is no queue or stack data structure that I can make use of).
Rebalancing in AVL happens when the depth of one part of the tree exceeds the depth of some other part of the tree by more than one. So to avoid triggering a rebalance you want to feed nodes into the AVL tree one level at a time; that is, feed it all of the nodes from level N of the original tree before you feed it any of the nodes from level N+1.
That ordering would be achieved by a breadth-first traversal of the original tree.
Edit
OP added:
Iteration on tree A needs to be done using only pointers (the
programming language is C and there is no queue or stack data
structure that I can make use of).
That does not affect the answer to the question as posed, which is still that a breadth-first traversal requires the fewest rebalances.
It does affect the way you will implement the breadth-first traversal. If you can't use a predefined queue then there are several ways that you could implement your own queue in C: an array, if permitted, or some variety of linked list are the obvious choices.
If you aren't allowed to use dynamic memory allocation, and the size of the original tree is not bounded such that you can build a queue using a fixed buffer that is sized for the worst case, then you can abandon the queue-based approach and instead use recursion to visit successively deeper levels of the tree. (Imagine a recursive traversal that stops when it reaches a specified depth in the tree, and only emits a result for nodes at that specified depth. Wrap that recursion in a while or for loop that runs from a depth of zero to the maximum depth of the tree.)
If the original tree is not necessarily AVL-balanced, then you can't just copy it.
To ensure that there is no rebalancing in the new tree, you should create a complete binary tree, and you should insert the nodes in BFS/level order so that every intermediate tree is also complete.
A "complete" tree is one in which every level is full, except possibly the last. Since every complete tree is AVL-balanced, and every intermediate tree is complete, there will be no rebalancing required.
If you can't copy your original tree out into an array or other data structure, then you'll need to do log(N) in-order traversals of the original tree to copy all the nodes. During the first traversal, you select and copy the root. During the second, you select and copy level 2. During the third, you copy level 3, etc.
Whether or not a source node is selected for each level depends only on its index within the source tree, so the actual structure of the source tree is irrelevant.
Since each traversal takes O(N) time, the total time spent traversing is O(N log N). Since inserts take O(log N) time, though, that is how long insertion takes as well, so doing log N traversals does not increase the complexity of the overall process.

What is the number of nodes at a particular level in a balanced binary search tree?

I was asked this question in a phone screen interview and I was not able to answer it. For example, in a BST, I know that the maximum number of nodes is given by 2^h (assuming the root node at height = 0)
I wanted to ask, is there a similar mathematical outcome for a balanced binary search tree as well (For AVL, Red Black trees?), i.e. the number of nodes at a particular level k.
Thanks!
A balanced binary tree starts with one node, which has two descendants. Each of those then has two descendants again. So there will be 1, 2, 4, 8 and so on nodes per level.
As a formula you can use 2^(level-1). The last row might not be completely full, so it can have less elements.
As the balancing step is costly, implementations usually do not rebalance after every mutation of the tree. They will rather apply a heuristic to find out when a rebalancing will make the most sense. So in practice, levels might have less nodes than if the tree were perfectly balanced and there might be additional levels from nodes being inserted in the wrong places.

AVL tree delete

Find an example AVL tree such that removing a single (specific) value
from the tree causes rebalancing to occur starting at two different
nodes.
I have this as my homework question. I know what an AVL tree is, but I don't understand the above question. Can someone shed some light?
Does rebalancing at two different nodes mean that two rotations are needed to fix the tree?
An AVL rebalance operation is a time when a particular node needs to have either a single or double rotation applied to correct the imbalance in the tree. I think the question is asking you to find a case where doing a single or double rotation within an AVL tree locally fixes the balance, but then requires a rebalance operation to be performed at a node higher up in the tree.
Hope this helps!

How does a red-black tree work?

There are lots of questions around about red-black trees but none of them answer how they work. Why is it called red-black? How does this keep the tree balanced (thus increasing performance over an unbalanced normal binary search tree)? I'm just looking for an overview of how and why it works.
For searches and traversals, it's the same as any binary tree.
For inserts and deletes, more sophisticated algorithms are applied which aim to ensure that the tree cannot be too unbalanced. These guarantee that all single-item operations will always run in at worst O(log n) time, whereas in a simple binary tree the binary tree can become so unbalanced that it's effectively a linked list, giving O(n) worst case performance for each single-item operation.
The basic idea of the red-black tree is to imitate a B-tree with up to 3 keys and 4 children per node. B-trees (or variations such as B+ trees) are mainly used for database indexes and for data stored on hard disk.
Each binary tree node has a "colour" - red or black. Each black node is, in the B-tree analogy, the subtree root for the subtree that fits within that B-tree node. If this node has red children, they are also considered part of the same B-tree node. So it is possible (though not done in practice) to convert a red-black tree to a B-tree and back, with (most) structure preserved. The only possible anomoly is that when a B-tree node has two keys and three children, you have a choice of which key to goes in the black node in the equivalent red-black tree.
For example, with red-black trees, every line from root to leaf has the same number of black nodes. This rule is derived from the B-tree rule that all leaf nodes are at the same depth.
Although this is the basic idea from which red-black trees are derived, the algorithms used in practice for inserts and deletes are modified to enforce all the B-tree rules (there might be a minor exception - I forget) during updates, but are tailored for the binary tree form. This means that doing a red-black tree insert or delete may give a different structure for the result than that you'd expect comparing with doing the B-tree insert or delete.
For more detail, follow the Wikipedia link that MigDus already supplied.
A red-black tree is an ordered binary tree where each vertex is coloured red or black. The intuition is that a red vertex should be seen as being at the same height as its parent (i.e., an edge to a red vertex is thought of as "horizontal" rather than "descending").
[I don't believe the Wikipedia entry makes this point clear.]
The usual rules for red-black trees require that a red vertex never point to another red vertex. This means that the possible vertex arrangements for any subtree rooted with a black vertex (bbb, bbr, rbb, rbr -- for [left child][root][right child]) correspond to 234 trees.
Searching a red-black tree is just the same as searching an ordinary binary tree. Insertion and deletion are similar, except that a "fix-up" rotation may be required at some point to preserve the red-black invariant.
Cheers!

Resources