how to calculate number of bounded faces in a graph? - data-structures

Let G be a simple undirected planar graph on 10 vertices with 15 edges.If G is a connected graph,then the number of bounded faces in any embedding of G on the plane is equal to?
How to solve these types of questions?

This can be computed according to Euler's formula and you can find the proof here Euler characteristic

Related

Minimum sum of distances from sensor nodes to all others

Is there a way to compute (accurate or hevristics) this problem on medium sized (up to 1000 nodes) weighted graph?
Place n (for example 5) sensors in nodes of the graph in such way that the sum of distances from every other node to the closest sensor will be minimal.
I'll show that this problem is NP-hard by reduction from Vertex Cover. This applies even if the graph is unweighted (you don't say whether it's weighted or not).
Given an unweighted graph G = (V, E) and an integer k, the question asked by Vertex Cover is "Does there exist a set of at most k vertices such that every edge has at least one endpoint in this set?" We will build a new graph G' = (V', E), which is the same as G except that all isolated vertices have been discarded, solve your problem on G', and then use it to answer the original question about Vertex Cover.
Suppose there does exist such a set S of k vertices. If we consider this set S to be the locations to put sensors in your problem, then every vertex in S has a distance of 0, and every other vertex is at a distance of exactly 1 away from a vertex that is in S (because if there was some vertex u for which this wasn't true, it would mean that none of u's neighbours are in S, so for each such neighbour u, the edge uv is not covered by the vertex cover, which would be a contradiction.)
This type of problem is called graph clustering. One of the popular methods to solve it is the Markov Cluster (MCL) Algorithm. A web search should provide some implementation examples. However it does not generally provide the optimal solution.

Complexity for edge addition (planar graph)?

I created a program that adds edges between vertices. The goal is to add as many edges as possible without crossing them(ie Planar graph). What is the complexity?
Attempt: Since I used depth first search I think it is O(n+m) where n is node and m is edge.
Also, if we plot the number of edges as a function of n what is it going to look like?
Your first question is impossible to answer, since you have not described the algorithm.
For your second question, any maximal planar graph with v ≥ 3 vertices has exactly 3v - 6 edges.

Directed maximum weighted bipartite matching allowing sharing of start/end vertices

Let G (U u V, E) be a weighted directed bipartite graph (i.e. U and V are the two sets of nodes of the bipartite graph and E contains directed weighted edges from U to V or from V to U). Here is an example:
In this case:
U = {A,B,C}
V = {D,E,F}
E = {(A->E,7), (B->D,1), (C->E,3), (F->A,9)}
Definition: DirectionalMatching (I made up this term just to make things clearer): set of directed edges that may share the start or end vertices. That is, if U->V and U'->V' both belong to a DirectionalMatching then V /= U' and V' /= U but it may be that U = U' or V = V'.
My question: How to efficiently find a DirectionalMatching, as defined above, for a bipartite directional weighted graph which maximizes the sum of the weights of its edges?
By efficiently, I mean polynomial complexity or faster, I already know how to implement a naive brute force approach.
In the example above the maximum weighted DirectionalMatching is: {F->A,C->E,B->D}, with a value of 13.
Formally demonstrating the equivalence of this problem to any other well known problem in graph theory would also be valuable.
Thanks!
Note 1: This question is based on Maximum weighted bipartite matching _with_ directed edges but with the extra relaxation that it is allowed for edges in the matching to share the origin or destination. Since that relaxation makes a big difference, I created an independent question.
Note 2: This is a maximum weight matching. Cardinality (how many edges are present) and the number of vertices covered by the matching is irrelevant for a correct result. Only the maximum weight matters.
Note 2: During my research to solve the problem I found this paper, I think it would be helpful to others trying to find a solution: Alternating cycles and paths in edge-coloured
multigraphs: a survey
Note 3: In case it helps, you can also think of the graph as its equivalent 2-edge coloured undirected bipartite multigraph. The problem formulation would then turn into: Find the set of edges without colour-alternating paths or cycles which has maximum weight sum.
Note 4: I suspect that the problem might be NP-hard, but I am not that experienced with reductions so I haven't managed to prove it yet.
Yet another example:
Imagine you had
4 vertices: {u1, u2} {v1, v2}
4 edges: {u1->v1, u1->v2, u2->v1, v2->u2}
Then, regardless of their weights, u1->v2 and v2->u2 cannot be in the same DirectionalMatching, neither can v2->u2 and u2->v1. However u1->v1 and u1->v2 can, and so can u1->v1 and u2->v1.
Define a new undirected graph G' from G as follows.
G' has a node (A, B) with weight w for each directed edge (A, B) with weight w in G
G' has undirected edge ((A, B),(B, C)) if (A, B) and (B, C) are both directed edges in G
http://en.wikipedia.org/wiki/Line_graph#Line_digraphs
Now find a maximal (weighted) independent vertex set in G'.
http://en.wikipedia.org/wiki/Vertex_independent_set
Edit: stuff after this point only works if all of the edge weights are the same - when the edge weights have different values its a more difficult problem (google "maximum weight independent vertex set" for possible algorithms)
Typically this would be an NP-hard problem. However, G' is a bipartite graph -- it contains only even cycles. Finding the maximal (weighted) independent vertex set in a bipartite graph is not NP-hard.
The algorithm you will run on G' is as follows.
Find the connected components of G', say H_1, H_2, ..., H_k
For each H_i do a 2-coloring (say red and blue) of the nodes. The cookbook approach here is to do a depth-first search on H_i alternating colors. A simple approach would be to color each vertex in H_i based on whether the corresponding edge in G goes from U to V (red) or from V to U (blue).
The two options for which nodes to select from H_i are either all the red nodes or all the blue nodes. Choose the colored node set with higher weight. For example, the red node set has weight equal to H_i.nodes.where(node => node.color == red).sum(node => node.w). Call the higher-weight node set N_i.
Your maximal weighted independent vertex set is now union(N_1, N_2, ..., N_k).
Since each vertex in G' corresponds to one of the directed edges in G, you have your maximal DirectionalMatching.
This problem can be solved in polynomial time using the Hungarian Algorithm. The "proof" by Vor above is wrong.
The method of structuring the problem for the above example is as follows:
D E F
A # 7 9
B 1 # #
C # 3 #
where "#" means negative infinity. You then resolve the matrix using the Hungarian algorithm to determine the maximum matching. You can multiply the numbers by -1 if you want to find a minimum matching.

Maximum Independent Subset of 2D Grid Subgraph

In the general case finding a Maximum Independent Subset of a Graph is NP Hard.
However consider the following subset of graphs:
Create an NxN grid of unit square cells.
Build a graph G by creating a vertex corresponding to every cell. Notice that there are N^2 vertices.
Create an edge between two vertices if their cells share a side. Notice there are 2N(N-1) edges.
A Maximum Independent Subset of G is obviously a checker pattern. A cell at the Rth row and Cth column is part of it if R+C is odd.
Now we create a graph G' by copying G and removing some vertices and edges. (If you remove a vertex also remove all edges it ended of course. Also note you can remove an edge without removing one of the vertices it ends.)
By what algorithm can we find a Maximum Independent Subset of G' ?
Read up here. I think you're still hosed, it remains NP-hard.
Since your degree is at most 4, the simple greedy algorithm obtains an approximation ratio of 2. Your resulting graph is also planar, so there is a good approximation algorithm (any fixed approximation ratio in poly time).

Bounding the number of edges between star graphs such that graph is planar

I have a graph G which consists only of star graphs. A star graph consists of one central node having edges to every other node in it. Let H1, H2,…,Hn be different star graphs of different sizes which are present in G. We call the set of all nodes which are centres in any star graph R.
Now suppose these star graphs are building edges to other star graphs such that no edge is incident between any nodes in R. Then, how many edges exist at maximum between the nodes in R and the nodes which are not in R, if the graph should remain planar?
I want the upper bound on the number of such edges. One upper bound that I have in mind is: consider them as bipartite planar graph where R is one set of vertices and rest of the vertices form another set A. We are interested in edges between these sets (R and A). Since it is planar bipartite, the number of such edges is bounded by twice the number of nodes in G.
What I feel is that is there a better bound, maybe twice the nodes in A plus the number of nodes in R.
In case you can disprove my intuition, then that would also be good. Hopefully some of you can come up with a good bound along with some relevant arguments.
That's the best you can do. Take any planar graph G and construct its face-vertex incidence graph H, whose faces all have 4 edges. Let R be the set of faces of G and construct stars any which way using edges in H. This achieves the bound for bipartite planar graphs.

Resources