I am new to data mining. I want to mine multi-dimensional and ordinal association rules from my data set e.g.
if (income => 100) ^ (priority=>1) ^ (skill=>technician ) then (approve=>prove)
What I have learned is that
categorical = for skills e.g. technician, plumber or any textual data
quantitative = numeric for date, balance
So major then is which association rule algorithm should be used? Mostly algorithm are quantitative or categorical is there any combined?
I think you are misunderstanding the concept of association rule mining on its own.
Your quantitative data cannot be used as such in association rule mining (as I understood your question). At least, you cannot 'tune' the quantity to fit your needs because everything in association rule mining is either items (quantitative or qualitative) and transactions so that you can define the rules that relate the items between each other. Therefore, the quantities become 'fixed' items.
Note what is association rule mining: given a set of binary attributes (items) and set of transactions, each containing a subset of items, you define a set of rules, which are implications: X -> Y (with X and Y being subsets of the set of items, and disjunct as well).
You can interpret it (or model) the implication of a rule as an if, but that is just syntactic sugar. There are not quantitative or qualitative as we know them in association rule mining. Just, items that belong to a set and the relationships (implications/rules) that we define between them.
Related
So I got this table
The given min support is 2 and the confidence level is = 50%
From the table above, I can see that all the items were frequent, so I was confused about making the association rule.
So the question is how to make the association rule based on the given min support and the confidence level.
This might be a basic or trivial question and might be straightforward. Still I would like to ask this to clear my doubt once and for all.
Take example of Passanger Class in Famous Titanic Data. Functionally it is indeed a Categorical Data, so it will make perfect sense to convert it to categorical variable. Algorithms as per my understanding tend to see a pattern specific to that class. But at the same time if you see it as numeric variable, it might denote a range also for a decision tree. Say passangers in between first class and second class.
It looks both are correct and both will affect the machine learning algorithm outputs in different ways.
Which one is appropriate and is there anywhere there is a extensive discussion about it? Should we use such ambiguous variables as numeric as well its copy as a categorical variable, which might prove to be a technique to uncover more patterns?
I suppose it's up to you whether you'd rather interpret a continuous PassengerClass variable as "for every one-unit increase in PassengerClass, the passenger's likelihood of survival goes up/down X%," versus a categorical (factor) PassengerClass as, "the likelihoods of survival for groups 2 and 3 (for example, leaving 1st-class passengers as the base group) are X and Y% percent higher, respectively, than the base group, holding all else constant."
I think about variables like PassengerClass almost as "treatment groups." Yes, I suppose you could interpret it as continuous, but I think it makes more sense to consider the unique effects of each class like "people who were given the drug versus those who weren't" - you can very easily compare the impacts of being in a higher class (e.g. 2 or 3) to being in the most common class, 1, which again would be left out.
The problem with mapping categorical notions to numerical is that some algorithms (e.g. neural networks) will interpret the value itself as having a meaning, i.e. you would get different results if you assign values 1,2,3 to passenger classes than, for example 0,1,2 or 3,2,1. The correspondence between the passenger classes and numbers is purely conventional and doesn't necessarily convey any additional meaning.
One could argue that the lesser the number, the "better" the class is, however it's still hard to interpret it as "the first class is twice as good as second class", unless you'll define some measure of "goodness" that will make the relation between numbers "1" and "2" sensible.
In this example, you have categorical data that is ordinal - meaning you can rank the categories (from best accommodations to worst, for example) but they're still categories. Regardless of how you label them, there's no actual information about the relative distances among your categories. You can put them in a table, but not (correctly) on a number line. In cases like this, it's generally best to treat your categorical data as independent categories.
I'm working on a problem that involves reconciling data that represents estimates of the same system under two different classification hierarchies. I want to enforce the requirement that equivalent classes or groups of classes have the same sum.
For example, say Classification A divides industries into: Agriculture (sheep/cattle), Agriculture (non-sheep/cattle), Mining, Manufacturing (textiles), Manufacturing (non-textiles), ...
Meanwhile, Classification B has a different breakdown: Agriculture, Mining (iron ore), Mining (non-iron-ore), Manufacturing (chemical), Manufacturing (non-chemical), ...
In this case, any total for A_Agric_SheepCattle + A_Agric_NonSheepCattle should match the equivalent total for B_Agric; A_Mining should match B_MiningIronOre + B_Mining_NonIronOre; and A_MFG_Textiles+A_MFG_NonTextiles should match B_MFG_Chemical+B_MFG_NonChemical.
For bonus complication, one category may be involved in multiple equivalencies, e.g. B_Mining_IronOre might be involved in an equivalency with both A_Mining and A_Mining_Metallic.
I will be working with multi-dimensional tables, with this sort of concordance applied to more than one dimension - e.g. I might be compiling data on Industry x Product, so each equivalency will be used in multiple constraints; hence I need an efficient way to define them once and invoke repeatedly, instead of just setting a direct constraint "A_Agric_SheepCattle + A_Agric_NonSheepCattle = B_Agric".
The most natural way to represent this sort of concordance would seem to be as a list of pairs of sets. The catch is that the set sizes will vary - sometimes we have a 1:1 equivalence, sometimes it's "these 5 categories equate to those 7 categories", etc.
I found this related question which offers two answers for dealing with variable-sized sets. One is to define all set members in a single ordered set with indices, then define the starting index for each set within that. However, this seems unwieldy for my problem; both classifications are likely to be long, so I'd need to be hopping between two loooong lists of industries and two looong lists of indices to see a single equivalency. This seems like it would be a nuisance to check, and hard to modify (since any change to membership for one of the early sets changes the index numbers for all following sets).
The other is to define pairs of long fixed-length sets, and then pad each set to the required length with null members.
This would be a much better option for my purposes since it lets me eyeball a single line and see the equivalence that it represents. But it would require a LOT of padding; most of the equivalence groups will be small but a few might be quite large, and everything has to be padded to the size of the largest expected length.
Is there a better approach?
Data Structure:
User has many Profiles
(Limit - no more than one of each profile type per user, no duplicates)
Profiles has many Attribute Values
(A user can have as many or few attribute values as they like)
Attributes belong to a category
(No overlap. This controls which attribute values a profile can have)
Example/Context:
I believe with stack exchange you can have many profiles for one user, as they differ per exchange site? In this problem:
Profile: Video, so Video profile only contains Attributes of Video category
Attributes, so an Attribute in the Video category may be Genre
Attribute Values, e.g. Comedy, Action, Thriller are all Attribute Values
Profiles and Attributes are just ways of grouping Attribute Values on two levels.
Without grouping (which is needed for weighting in 2. onwards), the relationship is just User hasMany Attribute Values.
Problem:
Give each user a similarity rating against each other user.
Similarity based on All Attribute Values associated with the user.
Flat/one level
Unequal number of attribute values between two users
Attribute value can only be selected once per user, so no duplicates
Therefore, binary string/boolean array with Cosine Similarity?
1 + Weight Profiles
Give each profile a weight (totaling 1?)
Work out profile similarity, then multiply by weight, and sum?
1 + Weight Attribute Categories and Profiles
As an attribute belongs to a category, categories can be weighted
Similarity per category, weighted sum, then same by profile?
Or merge profile and category weights
3 + Distance between every attribute value
Table of similarity distance for every possible value vs value
Rather than similarity by value === value
'Close' attributes contribute to overall similarity.
No idea how to do this one
Fancy code and useful functions are great, but I'm really looking to fully understand how to achieve these tasks, so I think generic pseudocode is best.
Thanks!
First of all, you should remember that everything should be made as simple as possible, but not simpler. This rule applies to many areas, but in things like semantics, similarity and machine learning it is essential. Using several layers of abstraction (attributes -> categories -> profiles -> users) makes your model harder to understand and to reason about, so I would try to omit it as much as possible. This means that it's highly preferable to keep direct relation between users and attributes. So, basically your users should be represented as vectors, where each variable (vector element) represents single attribute.
If you choose such representation, make sure all attributes make sense and have appropriate type in this context. For example, you can represent 5 video genres as 5 distinct variables, but not as numbers from 1 to 5, since cosine similarity (and most other algos) will treat them incorrectly (e.g. multiply thriller, represented as 2, with comedy, represented as 5, which makes no sense actually).
It's ok to use distance between attributes when applicable. Though I can hardly come up with example in your settings.
At this point you should stop reading and try it out: simple representation of users as vector of attributes and cosine similarity. If it works well, leave it as is - overcomplicating a model is never good.
And if the model performs bad, try to understand why. Do you have enough relevant attributes? Or are there too many noisy variables that only make it worse? Or do some attributes should really have larger importance than others? Depending on these questions, you may want to:
Run feature selection to avoid noisy variables.
Transform your variables, representing them in some other "coordinate system". For example, instead of using N variables for N video genres, you may use M other variables to represent closeness to specific social group. Say, 1 for "comedy" variable becomes 0.8 for "children" variable, 0.6 for "housewife" and 0.9 for "old_people". Or anything else. Any kind of translation that seems more "correct" is ok.
Use weights. Not weights for categories or profiles, but weights for distinct attributes. But don't set these weights yourself, instead run linear regression to find them out.
Let me describe last point in a bit more detail. Instead of simple cosine similarity, which looks like this:
cos(x, y) = x[0]*y[0] + x[1]*y[1] + ... + x[n]*y[n]
you may use weighted version:
cos(x, y) = w[0]*x[0]*y[0] + w[1]*x[1]*y[1] + ... + w[2]*x[2]*y[2]
Standard way to find such weights is to use some kind of regression (linear one is the most popular). Normally, you collect dataset (X, y) where X is a matrix with your data vectors on rows (e.g. details of house being sold) and y is some kind of "correct answer" (e.g. actual price that the house was sold for). However, in you case there's no correct answer to user vectors. In fact, you can define correct answer to their similarity only. So why not? Just make each row of X be a combination of 2 user vectors, and corresponding element of y - similarity between them (you should assign it yourself for a training dataset). E.g.:
X[k] = [ user_i[0]*user_j[0], user_i[1]*user_j[1], ..., user_i[n]*user_j[n] ]
y[k] = .75 // or whatever you assign to it
HTH
I have a list of requirements for a software project, assembled from the remains of its predecessor. Each requirement should map to one or more categories. Each of the categories consists of a group of keywords. What I'm trying to do is find an algorithm that would give me a score ranking which of the categories each requirement is likely to fall into. The results would be use as a starting point to further categorize the requirements.
As an example, suppose I have the requirement:
The system shall apply deposits to a customer's specified account.
And categories/keywords:
Customer Transactions: deposits, deposit, customer, account, accounts
Balance Accounts: account, accounts, debits, credits
Other Category: foo, bar
I would want the algorithm to score the requirement highest in category 1, lower in category 2, and not at all in category 3. The scoring mechanism is mostly irrelevant to me, but needs to convey how much more likely category 1 applies than category 2.
I'm new to NLP, so I'm kind of at a loss. I've been reading Natural Language Processing in Python and was hoping to apply some of the concepts, but haven't seen anything that quite fits. I don't think a simple frequency distribution would work, since the text I'm processing is so small (a single sentence.)
You might want to look the category of "similarity measures" or "distance measures" (which is different, in data mining lingo, than "classification".)
Basically, a similarity measure is a way in math you can:
Take two sets of data (in your case, words)
Do some computation/equation/algorithm
The result being that you have some number which tells you how "similar" that data is.
With similarity measures, this number is a number between 0 and 1, where "0" means "nothing matches at all" and "1" means "identical"
So you can actually think of your sentence as a vector - and each word in your sentence represents an element of that vector. Likewise for each category's list of keywords.
And then you can do something very simple: take the "cosine similarity" or "Jaccard index" (depending on how you structure your data.)
What both of these metrics do is they take both vectors (your input sentence, and your "keyword" list) and give you a number. If you do this across all of your categories, you can rank those numbers in order to see which match has the greatest similarity coefficient.
As an example:
From your question:
Customer Transactions: deposits,
deposit, customer, account, accounts
So you could construct a vector with 5 elements: (1, 1, 1, 1, 1). This means that, for the "customer transactions" keyword, you have 5 words, and (this will sound obvious but) each of those words is present in your search string. keep with me.
So now you take your sentence:
The system shall apply deposits to a
customer's specified account.
This has 2 words from the "Customer Transactions" set: {deposits, account, customer}
(actually, this illustrates another nuance: you actually have "customer's". Is this equivalent to "customer"?)
The vector for your sentence might be (1, 0, 1, 1, 0)
The 1's in this vector are in the same position as the 1's in the first vector - because those words are the same.
So we could say: how many times do these vectors differ? Lets compare:
(1,1,1,1,1)
(1,0,1,1,0)
Hm. They have the same "bit" 3 times - in the 1st, 3rd, and 4th position. They only differ by 2 bits. So lets say that when we compare these two vectors, we have a "distance" of 2. Congrats, we just computed the Hamming distance! The lower your Hamming distance, the more "similar" the data.
(The difference between a "similarity" measure and a "distance" measure is that the former is normalized - it gives you a value between 0 and 1. A distance is just any number, so it only gives you a relative value.)
Anyway, this might not be the best way to do natural language processing, but for your purposes it is the simplest and might actually work pretty well for your application, or at least as a starting point.
(PS: "classification" - as you have in your title - would be answering the question "If you take my sentence, which category is it most likely to fall into?" Which is a bit different than saying "how much more similar is my sentence to category 1 than category 2?" which seems to be what you're after.)
good luck!
The main characteristics of the problem are:
Externally defined categorization criteria (keyword list)
Items to be classified (lines from the requirement document) are made of a relatively small number of attributes values, for effectively a single dimension: "keyword".
As defined, no feedback/calibrarion (although it may be appropriate to suggest some of that)
These characteristics bring both good and bad news: the implementation should be relatively straight forward, but a consistent level of accuracy of the categorization process may be hard to achieve. Also the small amounts of various quantities (number of possible categories, max/average number of words in a item etc.) should give us room to select solutions that may be CPU and/or Space intentsive, if need be.
Yet, even with this license got "go fancy", I suggest to start with (and stay close to) to a simple algorithm and to expend on this basis with a few additions and considerations, while remaining vigilant of the ever present danger called overfitting.
Basic algorithm (Conceptual, i.e. no focus on performance trick at this time)
Parameters =
CatKWs = an array/hash of lists of strings. The list contains the possible
keywords, for a given category.
usage: CatKWs[CustTx] = ('deposits', 'deposit', 'customer' ...)
NbCats = integer number of pre-defined categories
Variables:
CatAccu = an array/hash of numeric values with one entry per each of the
possible categories. usage: CatAccu[3] = 4 (if array) or
CatAccu['CustTx'] += 1 (hash)
TotalKwOccurences = counts the total number of keywords matches (counts
multiple when a word is found in several pre-defined categories)
Pseudo code: (for categorizing one input item)
1. for x in 1 to NbCats
CatAccu[x] = 0 // reset the accumulators
2. for each word W in Item
for each x in 1 to NbCats
if W found in CatKWs[x]
TotalKwOccurences++
CatAccu[x]++
3. for each x in 1 to NbCats
CatAccu[x] = CatAccu[x] / TotalKwOccurences // calculate rating
4. Sort CatAccu by value
5. Return the ordered list of (CategoryID, rating)
for all corresponding CatAccu[x] values about a given threshold.
Simple but plausible: we favor the categories that have the most matches, but we divide by the overall number of matches, as a way of lessening the confidence rating when many words were found. note that this division does not affect the relative ranking of a category selection for a given item, but it may be significant when comparing rating of different items.
Now, several simple improvements come to mind: (I'd seriously consider the first two, and give thoughts to the other ones; deciding on each of these is very much tied to the scope of the project, the statistical profile of the data to be categorized and other factors...)
We should normalize the keywords read from the input items and/or match them in a fashion that is tolerant of misspellings. Since we have so few words to work with, we need to ensure we do not loose a significant one because of a silly typo.
We should give more importance to words found less frequently in CatKWs. For example the word 'Account' should could less than the word 'foo' or 'credit'
We could (but maybe that won't be useful or even helpful) give more weight to the ratings of items that have fewer [non-noise] words.
We could also include consideration based on digrams (two consecutive words), for with natural languages (and requirements documents are not quite natural :-) ) word proximity is often a stronger indicator that the words themselves.
we could add a tiny bit of importance to the category assigned to the preceding (or even following, in a look-ahead logic) item. Item will likely come in related series and we can benefit from this regularity.
Also, aside from the calculation of the rating per-se, we should also consider:
some metrics that would be used to rate the algorithm outcome itself (tbd)
some logic to collect the list of words associated with an assigned category and to eventually run statistic on these. This may allow the identification of words representative of a category and not initially listed in CatKWs.
The question of metrics, should be considered early, but this would also require a reference set of input item: a "training set" of sort, even though we are working off a pre-defined dictionary category-keywords (typically training sets are used to determine this very list of category-keywords, along with a weight factor). Of course such reference/training set should be both statistically significant and statistically representative [of the whole set].
To summarize: stick to simple approaches, anyway the context doesn't leave room to be very fancy. Consider introducing a way of measuring the efficiency of particular algorithms (or of particular parameters within a given algorithm), but beware that such metrics may be flawed and prompt you to specialize the solution for a given set at the detriment of the other items (overfitting).
I was also facing the same issue of creating a classifier based only on keywords. I was having a class keywords mapper file and which contained class variable and list of keywords occurring in a particular class. I came with the following algorithm to do and it is working really fine.
# predictor algorithm
for docs in readContent:
for x in range(len(docKywrdmppr)):
catAccum[x]=0
for i in range(len(docKywrdmppr)):
for word in removeStopWords(docs):
if word.casefold() in removeStopWords(docKywrdmppr['Keywords'][i].casefold()):
print(word)
catAccum[i]=catAccum[i]+counter
print(catAccum)
ind=catAccum.index(max(catAccum))
print(ind)
predictedDoc.append(docKywrdmppr['Document Type'][ind])