How to find planet in resonance - algorithm

I'm trying to find a method to detect from orbital parameters (period, eccentricity, semi-major axis...) planets that are in resonance.
I know that if the ratio between two planets is commensurable, this means that they are in resonance, but suppose I want to know IN WHICH resonance they are, how can I do it?
For instance, I have my matrix of N planets and periods. How can I create a loop to check if and in which resonance the planets are?
Something like:
for i=1, N
P(i)/P(i-1)=m
if m (check the resonance condition) then
write (planets parameters)
end if
end for
Thanks a lot.
I make this program, I have a 2xN matrix in which the columns are the ID of planets and their period, the rows are the number of planets, for instance something like that:
1 0.44
1 0.8
1 0.9
2 0.9
2 1.2
3 2.0
3 3.0
The trick to change from one system of planet to the other is to rename all the planets of a system with the same number and the planets of other system with another number so, I can be able to change the resonance condition from one system to another one.
The program is simple:
read the file and save the columns and rows numbers,
create and save a matrix of col*row objects,
save as a vector the `name` and `period` of planets,
start the cycle:
for r=1,row <--- THIS MUST READ all the file
if (difference in name = 0.) then start the resonance find criterion
for l = 0,4 (number of planet in each system: THIS MUST BE MODIFIED !!)
for i = 1,5
for j = 1,5
if (i*period(l)-j*period(l+1) eq 0) <- RESONANCE CONDITION !!!
then write on file
end for
end for
end for
else write a separation between the first set and second set of planets !
end for
This is the IDL code I wrote:
pro resfind
file = "data.dat"
rows =File_Lines(file) ; per le righe
openr,lun,file,/Get_lun ; per le colonne
line=""
readf,lun,line
cols = n_elements(StrSplit(line, /RegEx, /extract))
openr,1,"data.dat"
data = dblarr(cols,rows)
readf,1,data
close,1
name = data(0,*)
period = data(1,*)
openw,2,"find.dat"
for r = 0, rows-2 DO BEGIN ;
if (name(r)-name(r+1) EQ 0) then begin
for l = 0,rows-2 do begin
for j = 1,4 do begin
for i = 1,4 do begin
if (abs(i*period(l)-j*period(l+1)) EQ 0.) then begin
printf,2, 'i resonance:', i , ' j resonance:',j,' planet ID:',l,' planet ID:',l+1
endif
endfor
endfor
endfor
endif else begin
printf,2, ' '
endfor
close,2
end
PROBLEMS:
I can't understand how to eliminate the multiply of resonance (2:4, 3:6 and so on);
in the second for loop (the one with the planet) the number of planets must be change every time but I don't understand how to change this.

First, every real number can be represented as a ratio of integers with any finite precision. That's in particular what we do when we express numbers with more and more digits in decimal system. So you need not only check whether orbital periods are in some integer-to-integer ratio, but also if the two integers are relatively small. And it's arbitrary decision, which are 'small'.
Second, remember that two floating point values are, in general, different if one is not a copy of the other. For example 3*(1/3) may be not equal to 1. That's a result of finite precision: 1/3 is infinitely repeating when represented in binary, so it gets truncated somewhere when stored in memory. So you should not check if the periods ratio is equal to some ratio but rather if it is close enough to some ratio. And its arbitrary to say what is 'close enough'.
So the fastest way would be to build an array of ratios of some relatively small integers, then sort it and remove duplicates (3:3 = 2:2, and you don't need multiple ones in your array). (Remember that duplicates are not those equal to each oher, but those close enough to each other.) Then, for each two planets calculate orbital periods ratio and binary search your table for the closest value. If it is close enough, you found a resonance.

Related

generate clustered spatstat marks?

I was wondering if anyone knows how to assign marks in spatstat so that they tend to cluster spatially? I have a set of lat long coordinates that I want to categorize into 4 groups. I have figured out how to randomly assign marks/groups to these points using the following code:
as.ppp(data, window ,marks=factor(sample(1:4,replace=TRUE)))
But I can't figure out how to assign the marks so that groups tend to occupy points closer to one another. As a further complication, I would also like the number of points within each group to be the same, specified number each time. Does anyone have any leads? Thanks in advance!
Typically in spatstat we define models which describe/generate points at random locations and possibly with random marks. If I understand you correctly you have a fixed set of locations and you simply want to assign random marks. How many points do you have? If you don't have too many points a simple suggestion could be to generate a multivariate normally distributed variable and then take the n_1 lowest values for the first mark, the n_2 next values for the second mark, and so on. A simple example with 4 equal sized groups of points:
library(spatstat)
library(mvtnorm)
set.seed(42) # Make reproducible
X <- redwood # Example data
n <- npoints(redwood)
Xdist <- pairdist(X) # n x n matrix of distances in X
decay_rate <- 1 # Parameter for covariance sturcture
sigma <- exp(-decay_rate * Xdist)
m <- rmvnorm(1, rep(0, n), sigma)
breaks <- quantile(m, probs = c(0, .25, .5, .75, 1)) # breaks to cut marks in four equal sized groups
marks(X) <- cut(m, breaks = breaks, include.lowest=TRUE, labels = 1:4)
plot(X)

continous speech recocnition end point detection

does somebody know the algorithm for end point detection in continuous speech? because I can't find one, the existing algorithm is for isolated word, and not continuous, plis help. If may matlab source code would be helpfull
this is my algorithm
index1=[];
for i=1:length(spektral)
if abs(spektral(i))> 0.025
y(i)=spektral(i);
index1=[index1 i];
else y(i)=0;
end
end
spasi=[];
for i=2:length(index1)-1
if index1(i)>(index1(i-1)+1)
spasi=[spasi ; index1(i-1) index1(i)]; %penentuan spasi antarkata
end
end
The first loop can be omitted completely:
[row,col,val] = find(spektral>0.025);
This will output val the same as you have defined y above. Depending on the size of spektral, either row or col will contain your index1. If spektral is a column vector it will be row, if spektral is a row vector it will be col.
The second loop you can omit as well:
[row,col,val] = find(index1(2:end,:)>index1(1:end-1,:)+1);
Note that index1 will have to be either row or col as output from the first find command.
If I understand correctly, you want to have the spectral energy below the threshold to be considered as noise and want to have more than four seconds of this spectral energy below the threshold to classify it as a silence. In that case:
[row,col,val] = find(spektral<0.025);
tmp = cummin(row); % use cummin(col) if spektral is a row vector
Here I always struggle with find a short, vectorised way to check to subsequent amount of ones in the column, I'll add it when I find the solution.
You can do this with a nested while loop, but there's bound to be a vectorised way:
kk = 1;
while kk<length(tmp)-1
silence1 = 0;
while tmp(kk) = tmp(kk+1)
silence1 = silence1+1; % Sum the length of each silence
kk = kk+1;
end
silence(kk) = silence1;
end
silence(silence1==0)=[]; % Remove zero entries
TotalSilences = (sum(silence>4)); % Find the total number of silences

How to get histogram data object from matlab

Lets say I have a matrix x=[ 1 2 1 2 1 2 1 2 3 4 5 ]. To look at its histogram, I can do h=hist(x).
Now, h with retrieve a matrix consisting only the number of occurrences and does not store the original value to which it occurred.
What I want is something like a function which takes a value from x and returns number of occurrences of it. Having said that, what one thing histeq does should we admire is, it automatically scales nearest values according!
How should solve this issue? How exactly people do it?
My reason of interest is in images:
Lets say I have an image. I want to find all number of occurrences of a chrominance value of image.
I'm not really shure what you are looking for, but if you ant to use hist to count the number of occurences, use:
[h,c]=hist(x,sort(unique(x)))
Otherwise hist uses ranges defined by centers. The second output argument returns the corresponding number.
hist has a second return value that will be the bin centers xc corresponding to the counts n returned in form of the first return value: [n, xc] = hist(x). You should have a careful look at the reference which describes a large number of optional arguments that control the behavior of hist. However, hist is way too mighty for your specific problem.
To simply count the number of occurrences of a specific value, you could simply use something like sum(x(:) == 42). The colon operator will linearize your image matrix, the equals operator will yield a list of boolean values with 1 for each element of x that was 42, and thus sum will yield the total number of these occurrences.
An alternative to hist / histc is to use bsxfun:
n = unique(x(:)).'; %'// values contained in x. x can have any number of dims
y = sum(bsxfun(#eq, x(:), n)); %// count for each value

Matlab - if exists a faster way to assign values to big matrix?

I am a new student learning to use Matlab.
Could anyone please tell me is there a faster way possibly without loops:
to assign for each row only two values 1, -1 into different positions of a big sparse matrix.
My code to build a bimatrix or bibimatrix for the MILP problem of condition :
f^k_{ij} <= y_{ij} for every arc (i,j) and all k ~=r; in a multi-commodity flow model.
Naive approach:
bimatrix=[];
% create each row and then add to bimatrix
newrow4= zeros(1,n*(n+1)^2);
for k=1:n
for i=0:n
for j=1: n
if j~=i
%change value of some positions to -1 and 1
newrow4(i*n^2+(j-1)*n+k)=1;
newrow4((n+1)*n^2+i*n+j)=-1;
% add to bimatrix
bimatrix=[bimatrix; newrow4];
% change newrow4 back to zeros row.
newrow4(i*n^2+(j-1)*n+k)=0;
newrow4((n+1)*n^2+i*n+j)=0;
end
end
end
end
OR:
% Generate the big sparse matrix first.
bibimatrix=zeros(n^3 ,n*(n+1)^2);
t=1;
for k=1:n
for i=0:n
for j=1: n
if j~=i
%Change 2 positions in each row to -1 and 1 in each row.
bibimatrix(t,i*n^2+(j-1)*n+k)=1;
bibimatrix(t,(n+1)*n^2+i*n+j)=-1;
t=t+1
end
end
end
end
With these above code in Matlab, the time to generate this matrix, with n~12, is more than 3s. I need to generate a larger matrix in less time.
Thank you.
Suggestion: Use sparse matrices.
You should be able to create two vectors containing the column number where you want your +1 and -1 in each row. Let's call these two vectors vec_1 and vec_2. You should be able to do this without loops (if not, I still think the procedure below will be faster).
Let the size of your matrix be (max_row X max_col). Then you can create your matrix like this:
bibimatrix = sparse(1:max_row,vec_1,1,max_row,max_col);
bibimatrix = bibimatrix + sparse(1:max_row, vec_2,-1,max_row,max_col)
If you want to see the entire matrix (which you don't, since it's huge) you can write: full(bibimatrix).
EDIT:
You may also do it this way:
col_vec = [vec_1, vec_2];
row_vec = [1:max_row, 1:max_row];
s = [ones(1,max_row), -1*ones(1,max_row)];
bibimatrix = sparse(row_vec, col_vec, s, max_row, max_col)
Disclaimer: I don't have MATLAB available, so it might not be error-free.

How can I randomly iterate through a large Range?

I would like to randomly iterate through a range. Each value will be visited only once and all values will eventually be visited. For example:
class Array
def shuffle
ret = dup
j = length
i = 0
while j > 1
r = i + rand(j)
ret[i], ret[r] = ret[r], ret[i]
i += 1
j -= 1
end
ret
end
end
(0..9).to_a.shuffle.each{|x| f(x)}
where f(x) is some function that operates on each value. A Fisher-Yates shuffle is used to efficiently provide random ordering.
My problem is that shuffle needs to operate on an array, which is not cool because I am working with astronomically large numbers. Ruby will quickly consume a large amount of RAM trying to create a monstrous array. Imagine replacing (0..9) with (0..99**99). This is also why the following code will not work:
tried = {} # store previous attempts
bigint = 99**99
bigint.times {
x = rand(bigint)
redo if tried[x]
tried[x] = true
f(x) # some function
}
This code is very naive and quickly runs out of memory as tried obtains more entries.
What sort of algorithm can accomplish what I am trying to do?
[Edit1]: Why do I want to do this? I'm trying to exhaust the search space of a hash algorithm for a N-length input string looking for partial collisions. Each number I generate is equivalent to a unique input string, entropy and all. Basically, I'm "counting" using a custom alphabet.
[Edit2]: This means that f(x) in the above examples is a method that generates a hash and compares it to a constant, target hash for partial collisions. I do not need to store the value of x after I call f(x) so memory should remain constant over time.
[Edit3/4/5/6]: Further clarification/fixes.
[Solution]: The following code is based on #bta's solution. For the sake of conciseness, next_prime is not shown. It produces acceptable randomness and only visits each number once. See the actual post for more details.
N = size_of_range
Q = ( 2 * N / (1 + Math.sqrt(5)) ).to_i.next_prime
START = rand(N)
x = START
nil until f( x = (x + Q) % N ) == START # assuming f(x) returns x
I just remembered a similar problem from a class I took years ago; that is, iterating (relatively) randomly through a set (completely exhausting it) given extremely tight memory constraints. If I'm remembering this correctly, our solution algorithm was something like this:
Define the range to be from 0 to
some number N
Generate a random starting point x[0] inside N
Generate an iterator Q less than N
Generate successive points x[n] by adding Q to
the previous point and wrapping around if needed. That
is, x[n+1] = (x[n] + Q) % N
Repeat until you generate a new point equal to the starting point.
The trick is to find an iterator that will let you traverse the entire range without generating the same value twice. If I'm remembering correctly, any relatively prime N and Q will work (the closer the number to the bounds of the range the less 'random' the input). In that case, a prime number that is not a factor of N should work. You can also swap bytes/nibbles in the resulting number to change the pattern with which the generated points "jump around" in N.
This algorithm only requires the starting point (x[0]), the current point (x[n]), the iterator value (Q), and the range limit (N) to be stored.
Perhaps someone else remembers this algorithm and can verify if I'm remembering it correctly?
As #Turtle answered, you problem doesn't have a solution. #KandadaBoggu and #bta solution gives you random numbers is some ranges which are or are not random. You get clusters of numbers.
But I don't know why you care about double occurence of the same number. If (0..99**99) is your range, then if you could generate 10^10 random numbers per second (if you have a 3 GHz processor and about 4 cores on which you generate one random number per CPU cycle - which is imposible, and ruby will even slow it down a lot), then it would take about 10^180 years to exhaust all the numbers. You have also probability about 10^-180 that two identical numbers will be generated during a whole year. Our universe has probably about 10^9 years, so if your computer could start calculation when the time began, then you would have probability about 10^-170 that two identical numbers were generated. In the other words - practicaly it is imposible and you don't have to care about it.
Even if you would use Jaguar (top 1 from www.top500.org supercomputers) with only this one task, you still need 10^174 years to get all numbers.
If you don't belive me, try
tried = {} # store previous attempts
bigint = 99**99
bigint.times {
x = rand(bigint)
puts "Oh, no!" if tried[x]
tried[x] = true
}
I'll buy you a beer if you will even once see "Oh, no!" on your screen during your life time :)
I could be wrong, but I don't think this is doable without storing some state. At the very least, you're going to need some state.
Even if you only use one bit per value (has this value been tried yes or no) then you will need X/8 bytes of memory to store the result (where X is the largest number). Assuming that you have 2GB of free memory, this would leave you with more than 16 million numbers.
Break the range in to manageable batches as shown below:
def range_walker range, batch_size = 100
size = (range.end - range.begin) + 1
n = size/batch_size
n.times do |i|
x = i * batch_size + range.begin
y = x + batch_size
(x...y).sort_by{rand}.each{|z| p z}
end
d = (range.end - size%batch_size + 1)
(d..range.end).sort_by{rand}.each{|z| p z }
end
You can further randomize solution by randomly choosing the batch for processing.
PS: This is a good problem for map-reduce. Each batch can be worked by independent nodes.
Reference:
Map-reduce in Ruby
you can randomly iterate an array with shuffle method
a = [1,2,3,4,5,6,7,8,9]
a.shuffle!
=> [5, 2, 8, 7, 3, 1, 6, 4, 9]
You want what's called a "full cycle iterator"...
Here is psudocode for the simplest version which is perfect for most uses...
function fullCycleStep(sample_size, last_value, random_seed = 31337, prime_number = 32452843) {
if last_value = null then last_value = random_seed % sample_size
return (last_value + prime_number) % sample_size
}
If you call this like so:
sample = 10
For i = 1 to sample
last_value = fullCycleStep(sample, last_value)
print last_value
next
It would generate random numbers, looping through all 10, never repeating If you change random_seed, which can be anything, or prime_number, which must be greater than, and not be evenly divisible by sample_size, you will get a new random order, but you will still never get a duplicate.
Database systems and other large-scale systems do this by writing the intermediate results of recursive sorts to a temp database file. That way, they can sort massive numbers of records while only keeping limited numbers of records in memory at any one time. This tends to be complicated in practice.
How "random" does your order have to be? If you don't need a specific input distribution, you could try a recursive scheme like this to minimize memory usage:
def gen_random_indices
# Assume your input range is (0..(10**3))
(0..3).sort_by{rand}.each do |a|
(0..3).sort_by{rand}.each do |b|
(0..3).sort_by{rand}.each do |c|
yield "#{a}#{b}#{c}".to_i
end
end
end
end
gen_random_indices do |idx|
run_test_with_index(idx)
end
Essentially, you are constructing the index by randomly generating one digit at a time. In the worst-case scenario, this will require enough memory to store 10 * (number of digits). You will encounter every number in the range (0..(10**3)) exactly once, but the order is only pseudo-random. That is, if the first loop sets a=1, then you will encounter all three-digit numbers of the form 1xx before you see the hundreds digit change.
The other downside is the need to manually construct the function to a specified depth. In your (0..(99**99)) case, this would likely be a problem (although I suppose you could write a script to generate the code for you). I'm sure there's probably a way to re-write this in a state-ful, recursive manner, but I can't think of it off the top of my head (ideas, anyone?).
[Edit]: Taking into account #klew and #Turtle's answers, the best I can hope for is batches of random (or close to random) numbers.
This is a recursive implementation of something similar to KandadaBoggu's solution. Basically, the search space (as a range) is partitioned into an array containing N equal-sized ranges. Each range is fed back in a random order as a new search space. This continues until the size of the range hits a lower bound. At this point the range is small enough to be converted into an array, shuffled, and checked.
Even though it is recursive, I haven't blown the stack yet. Instead, it errors out when attempting to partition a search space larger than about 10^19 keys. I has to do with the numbers being too large to convert to a long. It can probably be fixed:
# partition a range into an array of N equal-sized ranges
def partition(range, n)
ranges = []
first = range.first
last = range.last
length = last - first + 1
step = length / n # integer division
((first + step - 1)..last).step(step) { |i|
ranges << (first..i)
first = i + 1
}
# append any extra onto the last element
ranges[-1] = (ranges[-1].first)..last if last > step * ranges.length
ranges
end
I hope the code comments help shed some light on my original question.
pastebin: full source
Note: PW_LEN under # options can be changed to a lower number in order to get quicker results.
For a prohibitively large space, like
space = -10..1000000000000000000000
You can add this method to Range.
class Range
M127 = 170_141_183_460_469_231_731_687_303_715_884_105_727
def each_random(seed = 0)
return to_enum(__method__) { size } unless block_given?
unless first.kind_of? Integer
raise TypeError, "can't randomly iterate from #{first.class}"
end
sample_size = self.end - first + 1
sample_size -= 1 if exclude_end?
j = coprime sample_size
v = seed % sample_size
each do
v = (v + j) % sample_size
yield first + v
end
end
protected
def gcd(a,b)
b == 0 ? a : gcd(b, a % b)
end
def coprime(a, z = M127)
gcd(a, z) == 1 ? z : coprime(a, z + 1)
end
end
You could then
space.each_random { |i| puts i }
729815750697818944176
459631501395637888351
189447252093456832526
919263002791275776712
649078753489094720887
378894504186913665062
108710254884732609237
838526005582551553423
568341756280370497598
298157506978189441773
27973257676008385948
757789008373827330134
487604759071646274309
217420509769465218484
947236260467284162670
677052011165103106845
406867761862922051020
136683512560740995195
866499263258559939381
596315013956378883556
326130764654197827731
55946515352016771906
785762266049835716092
515578016747654660267
...
With a good amount of randomness so long as your space is a few orders smaller than M127.
Credit to #nick-steele and #bta for the approach.
This isn't really a Ruby-specific answer but I hope it's permitted. Andrew Kensler gives a C++ "permute()" function that does exactly this in his "Correlated Multi-Jittered Sampling" report.
As I understand it, the exact function he provides really only works if your "array" is up to size 2^27, but the general idea could be used for arrays of any size.
I'll do my best to sort of explain it. The first part is you need a hash that is reversible "for any power-of-two sized domain". Consider x = i + 1. No matter what x is, even if your integer overflows, you can determine what i was. More specifically, you can always determine the bottom n-bits of i from the bottom n-bits of x. Addition is a reversible hash operation, as is multiplication by an odd number, as is doing a bitwise xor by a constant. If you know a specific power-of-two domain, you can scramble bits in that domain. E.g. x ^= (x & 0xFF) >> 5) is valid for the 16-bit domain. You can specify that domain with a mask, e.g. mask = 0xFF, and your hash function becomes x = hash(i, mask). Of course you can add a "seed" value into that hash function to get different randomizations. Kensler lays out more valid operations in the paper.
So you have a reversible function x = hash(i, mask, seed). The problem is that if you hash your index, you might end up with a value that is larger than your array size, i.e. your "domain". You can't just modulo this or you'll get collisions.
The reversible hash is the key to using a technique called "cycle walking", introduced in "Ciphers with Arbitrary Finite Domains". Because the hash is reversible (i.e. 1-to-1), you can just repeatedly apply the same hash until your hashed value is smaller than your array! Because you're applying the same hash, and the mapping is one-to-one, whatever value you end up on will map back to exactly one index, so you don't have collisions. So your function could look something like this for 32-bit integers (pseudocode):
fun permute(i, length, seed) {
i = hash(i, 0xFFFF, seed)
while(i >= length): i = hash(i, 0xFFFF, seed)
return i
}
It could take a lot of hashes to get to your domain, so Kensler does a simple trick: he keeps the hash within the domain of the next power of two, which makes it require very few iterations (~2 on average), by masking out the unnecessary bits. The final algorithm looks like this:
fun next_pow_2(length) {
# This implementation is for clarity.
# See Kensler's paper for one way to do it fast.
p = 1
while (p < length): p *= 2
return p
}
permute(i, length, seed) {
mask = next_pow_2(length)-1
i = hash(i, mask, seed) & mask
while(i >= length): i = hash(i, mask, seed) & mask
return i
}
And that's it! Obviously the important thing here is choosing a good hash function, which Kensler provides in the paper but I wanted to break down the explanation. If you want to have different random permutations each time, you can add a "seed" value to the permute function which then gets passed to the hash function.

Resources