Given an array we need to find out the count of number of subsets having sum exactly equal to a given integer k.
Please suggest an optimal algorithm for this problem. Here the actual subsets are not needed just the count will do.
The array consists of integers which can be negative as well as non negative.
Example:
Array -> {1,4,-1,10,5} abs sum->9
Answer should be 2 for{4,5} and {-1,10}
This is a variation of the subset sum problem, which is NP-Hard - so there is no known polynomial solution to it. (In fact, the subset sum problem says it is hard to find if there is even one subset that sums to the given sum).
Possible approaches to solve it are brute force (check all possible subsets), or if the set contains relatively small integers, you can use the pseudo-polynomial dynamic programming technique:
f(i,0) = 1 (i >= 0) //succesful base clause
f(0,j) = 0 (j != 0) //non succesful base clause
f(i,j) = f(i-1,j) + f(i-1,j-arr[i]) //step
Applying dynamic programming to the above recursive formula gives you O(k*n) time and space solution.
Invoke with f(n,k) [assuming 1 based index for arrays].
Following is memoized Dynamic Programming code to print the count of the number of subsets with a given sum. The repeating values of DP are stores in "tmp" array. To attain a DP solution first always start with a recursive solution to the problem and then store the repeating value in a tmp array to arrive at a memoized solution.
#include <bits/stdc++.h>
using namespace std;
int tmp[1001][1001];
int subset_count(int* arr, int sum, int n)
{ ` if(sum==0)
return 1;
if(n==0)
return 0;
if(tmp[n][sum]!=-1)
return tmp[n][sum];
else{
if(arr[n-1]>sum)
return tmp[n][sum]=subset_count(arr,sum, n-1);
else{
return tmp[n][required_sum]=subset_count(arr,sum, n- 1)+subset_count(arr,sum-arr[n-1], n-1);`
}
}
}
// Driver code
int main()
{ ` memset(tmp,-1,sizeof(tmp));
int arr[] = { 2, 3, 5, 6, 8, 10 };
int n = sizeof(arr) / sizeof(int);
int sum = 10; `
cout << subset_count(arr,sum, n);
return 0;
}
This is recursive solution. It has time complexity of O(2^n)
Use Dynamic Programming to Improve time complexity to be Quadratic O(n^2)
def count_of_subset(arr,sum,n,count):
if sum==0:
count+=1
return count
if n==0 and sum!=0:
count+=0
return count
if arr[n-1]<=sum:
count=count_of_subset(arr,sum-arr[n-1],n-1,count)
count=count_of_subset(arr,sum,n-1,count)
return count
else:
count=count_of_subset(arr,sum,n-1,count)
return count
int numSubseq(vector<int>& nums, int target) {
int size = nums.size();
int T[size+1][target+1];
for(int i=0;i<=size;i++){
for(int j=0;j<=target;j++){
if(i==0 && j!=0)
T[i][j]=0;
else if(j==0)
T[i][j] = 1;
}
}
for(int i=1;i<=size;i++){
for(int j=1;j<=target;j++){
if(nums[i-1] <= j)
T[i][j] = T[i-1][j] + T[i-1][j-nums[i-1]];
else
T[i][j] = T[i-1][j];
}
}
return T[size][target];
}
Although the above base case will work fine if the constraints is : 1<=v[i]<=1000
But consider : constraints : 0<=v[i]<=1000
The above base case will give wrong answer , consider a test case : v = [0,0,1] and k = 1 , the output will be "1" according to the base case .
But the correct answer is 3 : {0,1}{0,0,1}{1}
to avoid this we can go deep instead of returning 0 , and fix it by
C++:
if(ind==0)
{
if(v[0]==target and target==0)return 2;
if(v[0]==target || target==0)return 1;
return 0 ;
}
One of the answer to this solution is to generate a power set of N, where N is the size of the array which will be equal to 2^n. For every number between 0 and 2^N-1 check its binary representation and include all the values from the array for which the bit is in the set position i.e one.
Check if all the values you included results in the sum which is equal to the required value.
This might not be the most efficient solution but as this is an NP hard problem, there exist no polynomial time solution for this problem.
Related
Given a total set of denominations and a total amount, we have to find the minimum number of coins needed to make the total exactly.
Constraint: Only one coin of each denomination is available.
How do you compare the Greedy Approach with Dynamic Programming Approach?
Edit:
Example: I have cash of denominations 1,2,3,5. I have only one coin of each denomination. I want to get the change for 11 using minimum number of coins. The answer is 4 ( 1 + 2 + 3 + 5). Had I had an infinite supply of each denomination, the answer would've been 3 (5 + 5 + 1 or 5 + 3 + 3).
How do you compare the Greedy Approach with Dynamic Programming Approach?
Greedy approach would fail in your case, because you will never know when to skip or take the coin to get best answer. You have to try all possible solutions by including/excluding each coin.
You can do that using dynamic programming using the same coins change algorithm but avoiding taking same coin more than once, for example
recursive top to bottom approach:
int n = 4, k = 11;
int dp[4][12], coins[] = {1, 2, 3, 5};
int solve(int i = 0, int sm = k) {
// base case for when the sum is reached
if (sm == 0) {
return 0;
}
// took more than needed coins or reached the end without reaching sum
if (sm < 0 || i == n) {
return 1000000000;
}
// check if dp value already calculated
int& ret = dp[i][sm];
if (~ret) {
return ret;
}
// otherwise, try taking the coin or skipping it
return ret = min(solve(i+1, sm), 1 + solve(i+1, sm-coins[i]));
}
int main() {
memset(dp, -1, sizeof dp);
cout << solve() << endl;
return 0;
}
// output: 4
Finding any solution, let alone the largest solution, is known as the subset sum problem. It is NP-complete, and the most efficient known algorithms have exponential running time.
Therefore, a greedy algorithm will not work for this problem. You will not do much better than some kind of backtracking search. The solution using dynamic programming will practically be equivalent to a backtracking search, just implemented differently. So the comparison is very short: greedy won't work, but dynamic programming can.
I have written an algorithm which solves the minimum number of clique in a graph. I have tested my backtracking algorithm, but I couldn't calculate the worst case time complexity, I have tried a lot of times.
I know that this problem is an NP hard problem, but I think is it possible to give a worst time complexity based on the code. What is the worst time complexity for this code? Any idea? How you formalize the recursive equation?
I have tried to write understandable code. If you have any question, write a comment.
I will be very glad for tips, references, answers.
Thanks for the tips guys:).
EDIT
As M C commented basically I have tried to solve this problem Clique cover problem
Pseudocode:
function countCliques(graph, vertice, cliques, numberOfClique, minimumSolution)
for i = 1 .. number of cliques + 1 new loop
if i > minimumSolution then
return;
end if
if (fitToClique(cliques(i), vertice, graph) then
addVerticeToClique(cliques(i), vertice);
if (vertice == 0) then //last vertice
minimumSolution = numberOfClique
printResult(result);
else
if (i == number of cliques + 1) then // if we are using a new clique the +1 always a new clique
countCliques(graph, vertice - 1, cliques, number of cliques + 1, minimum)
else
countCliques(graph, vertice - 1, cliques, number of cliques, minimum)
end if
end if
deleteVerticeFromClique(cliques(i), vertice);
end if
end loop
end function
bool fitToClique(clique, vertice, graph)
for ( i = 1 .. cliqueSize) loop
verticeFromClique = clique(i)
if (not connected(verticeFromClique, vertice)) then
return false
end if
end loop
return true
end function
Code
int countCliques(int** graph, int currentVertice, int** result, int numberOfSubset, int& minimum) {
// if solution
if (currentVertice == -1) {
// if a better solution
if (minimum > numberOfSubset) {
minimum = numberOfSubset;
printf("New minimum result:\n");
print(result, numberOfSubset);
}
c++;
} else {
// if not a solution, try to insert to a clique, if not fit then create a new clique (+1 in the loop)
for (int i = 0; i < numberOfSubset + 1; i++) {
if (i > minimum) {
break;
}
//if fit
if (fitToSubset(result[i], currentVertice, graph)) {
// insert
result[i][0]++;
result[i][result[i][0]] = currentVertice;
// try to insert the next vertice
countCliques(graph, currentVertice - 1, result, (i == numberOfSubset) ? (i + 1) : numberOfSubset, minimum);
// delete vertice from the clique
result[i][0]--;
}
}
}
return c;
}
bool fitToSubset(int *subSet, int currentVertice, int **graph) {
int subsetLength = subSet[0];
for (int i = 1; i < subsetLength + 1; i++) {
if (graph[subSet[i]][currentVertice] != 1) {
return false;
}
}
return true;
}
void print(int **result, int n) {
for (int i = 0; i < n; i++) {
int m = result[i][0];
printf("[");
for (int j = 1; j < m; j++) {
printf("%d, ",result[i][j] + 1);
}
printf("%d]\n", result[i][m] + 1);
}
}
int** readFile(const char* file, int& v, int& e) {
int from, to;
int **graph;
FILE *graphFile;
fopen_s(&graphFile, file, "r");
fscanf_s(graphFile,"%d %d", &v, &e);
graph = (int**)malloc(v * sizeof(int));
for (int i = 0; i < v; i ++) {
graph[i] = (int*)calloc(v, sizeof(int));
}
while(fscanf_s(graphFile,"%d %d", &from, &to) == 2) {
graph[from - 1][to - 1] = 1;
graph[to - 1][from - 1] = 1;
}
fclose(graphFile);
return graph;
}
The time complexity of your algorithm is very closely linked to listing compositions of an integer, of which there are O(2^N).
The compositions alone is not enough though, as there is also a combinatorial aspect, although there are rules as well. Specifically, a clique must contain the highest numbered unused vertex.
An example is the composition 2-2-1 (N = 5). The first clique must contain 4, reducing the number of unused vertices to 4. There is then a choice between 1 of 4 elements, unused vertices is now 3. 1 element of the second clique is known, so 2 unused vertices. Thus must be a choice between 1 of 2 elements decides the final vertex in the second clique. This only leaves a single vertex for the last clique. For this composition there are 8 possible ways it could be made, given by (1*C(4,1)*1*C(2,1)*1). The 8 possible ways are as followed:
(5,4),(3,2),(1)
(5,4),(3,1),(2)
(5,3),(4,2),(1)
(5,3),(4,1),(2)
(5,2),(4,3),(1)
(5,2),(4,1),(3)
(5,1),(4,3),(2)
(5,1),(4,2),(3)
The above example shows the format required for the worst case, which is when the composition contains the as many 2s as possible. I'm thinking this is still O(N!) even though it's actually (N-1)(N-3)(N-5)...(1) or (N-1)(N-3)(N-5)...(2). However, it is impossible as it would as shown require a complete graph, which would be caught right away, and limit the graph to a single clique, of which there is only one solution.
Given the variations of the compositions, the number of possible compositions is probably a fair starting point for the upper bound as O(2^N). That there are O(3^(N/3)) maximal cliques is another bit of useful information, as the algorithm could theoretically find all of them. Although that isn't good enough either as some maximal cliques are found multiple times while others not at all.
A tighter upper bound is difficult for two main reasons. First, the algorithm progressively limits the max number of cliques, which I suppose you could call the size of the composition, which puts an upper limit on the computation time spent per clique. Second, missing edges cause a large number of possible variations to be ignored, which almost ensures that the vast majority of the O(N!) variations are ignored. Combined with the above paragraph, makes putting the upper bound difficult. If this isn't enough for an answer, you might want to take the question to math area of stack exchange as a better answer will require a fair bit of mathematical analysis.
An interesting interview question that a colleague of mine uses:
Suppose that you are given a very long, unsorted list of unsigned 64-bit integers. How would you find the smallest non-negative integer that does not occur in the list?
FOLLOW-UP: Now that the obvious solution by sorting has been proposed, can you do it faster than O(n log n)?
FOLLOW-UP: Your algorithm has to run on a computer with, say, 1GB of memory
CLARIFICATION: The list is in RAM, though it might consume a large amount of it. You are given the size of the list, say N, in advance.
If the datastructure can be mutated in place and supports random access then you can do it in O(N) time and O(1) additional space. Just go through the array sequentially and for every index write the value at the index to the index specified by value, recursively placing any value at that location to its place and throwing away values > N. Then go again through the array looking for the spot where value doesn't match the index - that's the smallest value not in the array. This results in at most 3N comparisons and only uses a few values worth of temporary space.
# Pass 1, move every value to the position of its value
for cursor in range(N):
target = array[cursor]
while target < N and target != array[target]:
new_target = array[target]
array[target] = target
target = new_target
# Pass 2, find first location where the index doesn't match the value
for cursor in range(N):
if array[cursor] != cursor:
return cursor
return N
Here's a simple O(N) solution that uses O(N) space. I'm assuming that we are restricting the input list to non-negative numbers and that we want to find the first non-negative number that is not in the list.
Find the length of the list; lets say it is N.
Allocate an array of N booleans, initialized to all false.
For each number X in the list, if X is less than N, set the X'th element of the array to true.
Scan the array starting from index 0, looking for the first element that is false. If you find the first false at index I, then I is the answer. Otherwise (i.e. when all elements are true) the answer is N.
In practice, the "array of N booleans" would probably be encoded as a "bitmap" or "bitset" represented as a byte or int array. This typically uses less space (depending on the programming language) and allows the scan for the first false to be done more quickly.
This is how / why the algorithm works.
Suppose that the N numbers in the list are not distinct, or that one or more of them is greater than N. This means that there must be at least one number in the range 0 .. N - 1 that is not in the list. So the problem of find the smallest missing number must therefore reduce to the problem of finding the smallest missing number less than N. This means that we don't need to keep track of numbers that are greater or equal to N ... because they won't be the answer.
The alternative to the previous paragraph is that the list is a permutation of the numbers from 0 .. N - 1. In this case, step 3 sets all elements of the array to true, and step 4 tells us that the first "missing" number is N.
The computational complexity of the algorithm is O(N) with a relatively small constant of proportionality. It makes two linear passes through the list, or just one pass if the list length is known to start with. There is no need to represent the hold the entire list in memory, so the algorithm's asymptotic memory usage is just what is needed to represent the array of booleans; i.e. O(N) bits.
(By contrast, algorithms that rely on in-memory sorting or partitioning assume that you can represent the entire list in memory. In the form the question was asked, this would require O(N) 64-bit words.)
#Jorn comments that steps 1 through 3 are a variation on counting sort. In a sense he is right, but the differences are significant:
A counting sort requires an array of (at least) Xmax - Xmin counters where Xmax is the largest number in the list and Xmin is the smallest number in the list. Each counter has to be able to represent N states; i.e. assuming a binary representation it has to have an integer type (at least) ceiling(log2(N)) bits.
To determine the array size, a counting sort needs to make an initial pass through the list to determine Xmax and Xmin.
The minimum worst-case space requirement is therefore ceiling(log2(N)) * (Xmax - Xmin) bits.
By contrast, the algorithm presented above simply requires N bits in the worst and best cases.
However, this analysis leads to the intuition that if the algorithm made an initial pass through the list looking for a zero (and counting the list elements if required), it would give a quicker answer using no space at all if it found the zero. It is definitely worth doing this if there is a high probability of finding at least one zero in the list. And this extra pass doesn't change the overall complexity.
EDIT: I've changed the description of the algorithm to use "array of booleans" since people apparently found my original description using bits and bitmaps to be confusing.
Since the OP has now specified that the original list is held in RAM and that the computer has only, say, 1GB of memory, I'm going to go out on a limb and predict that the answer is zero.
1GB of RAM means the list can have at most 134,217,728 numbers in it. But there are 264 = 18,446,744,073,709,551,616 possible numbers. So the probability that zero is in the list is 1 in 137,438,953,472.
In contrast, my odds of being struck by lightning this year are 1 in 700,000. And my odds of getting hit by a meteorite are about 1 in 10 trillion. So I'm about ten times more likely to be written up in a scientific journal due to my untimely death by a celestial object than the answer not being zero.
As pointed out in other answers you can do a sort, and then simply scan up until you find a gap.
You can improve the algorithmic complexity to O(N) and keep O(N) space by using a modified QuickSort where you eliminate partitions which are not potential candidates for containing the gap.
On the first partition phase, remove duplicates.
Once the partitioning is complete look at the number of items in the lower partition
Is this value equal to the value used for creating the partition?
If so then it implies that the gap is in the higher partition.
Continue with the quicksort, ignoring the lower partition
Otherwise the gap is in the lower partition
Continue with the quicksort, ignoring the higher partition
This saves a large number of computations.
To illustrate one of the pitfalls of O(N) thinking, here is an O(N) algorithm that uses O(1) space.
for i in [0..2^64):
if i not in list: return i
print "no 64-bit integers are missing"
Since the numbers are all 64 bits long, we can use radix sort on them, which is O(n). Sort 'em, then scan 'em until you find what you're looking for.
if the smallest number is zero, scan forward until you find a gap. If the smallest number is not zero, the answer is zero.
For a space efficient method and all values are distinct you can do it in space O( k ) and time O( k*log(N)*N ). It's space efficient and there's no data moving and all operations are elementary (adding subtracting).
set U = N; L=0
First partition the number space in k regions. Like this:
0->(1/k)*(U-L) + L, 0->(2/k)*(U-L) + L, 0->(3/k)*(U-L) + L ... 0->(U-L) + L
Find how many numbers (count{i}) are in each region. (N*k steps)
Find the first region (h) that isn't full. That means count{h} < upper_limit{h}. (k steps)
if h - count{h-1} = 1 you've got your answer
set U = count{h}; L = count{h-1}
goto 2
this can be improved using hashing (thanks for Nic this idea).
same
First partition the number space in k regions. Like this:
L + (i/k)->L + (i+1/k)*(U-L)
inc count{j} using j = (number - L)/k (if L < number < U)
find first region (h) that doesn't have k elements in it
if count{h} = 1 h is your answer
set U = maximum value in region h L = minimum value in region h
This will run in O(log(N)*N).
I'd just sort them then run through the sequence until I find a gap (including the gap at the start between zero and the first number).
In terms of an algorithm, something like this would do it:
def smallest_not_in_list(list):
sort(list)
if list[0] != 0:
return 0
for i = 1 to list.last:
if list[i] != list[i-1] + 1:
return list[i-1] + 1
if list[list.last] == 2^64 - 1:
assert ("No gaps")
return list[list.last] + 1
Of course, if you have a lot more memory than CPU grunt, you could create a bitmask of all possible 64-bit values and just set the bits for every number in the list. Then look for the first 0-bit in that bitmask. That turns it into an O(n) operation in terms of time but pretty damned expensive in terms of memory requirements :-)
I doubt you could improve on O(n) since I can't see a way of doing it that doesn't involve looking at each number at least once.
The algorithm for that one would be along the lines of:
def smallest_not_in_list(list):
bitmask = mask_make(2^64) // might take a while :-)
mask_clear_all (bitmask)
for i = 1 to list.last:
mask_set (bitmask, list[i])
for i = 0 to 2^64 - 1:
if mask_is_clear (bitmask, i):
return i
assert ("No gaps")
Sort the list, look at the first and second elements, and start going up until there is a gap.
We could use a hash table to hold the numbers. Once all numbers are done, run a counter from 0 till we find the lowest. A reasonably good hash will hash and store in constant time, and retrieves in constant time.
for every i in X // One scan Θ(1)
hashtable.put(i, i); // O(1)
low = 0;
while (hashtable.get(i) <> null) // at most n+1 times
low++;
print low;
The worst case if there are n elements in the array, and are {0, 1, ... n-1}, in which case, the answer will be obtained at n, still keeping it O(n).
You can do it in O(n) time and O(1) additional space, although the hidden factor is quite large. This isn't a practical way to solve the problem, but it might be interesting nonetheless.
For every unsigned 64-bit integer (in ascending order) iterate over the list until you find the target integer or you reach the end of the list. If you reach the end of the list, the target integer is the smallest integer not in the list. If you reach the end of the 64-bit integers, every 64-bit integer is in the list.
Here it is as a Python function:
def smallest_missing_uint64(source_list):
the_answer = None
target = 0L
while target < 2L**64:
target_found = False
for item in source_list:
if item == target:
target_found = True
if not target_found and the_answer is None:
the_answer = target
target += 1L
return the_answer
This function is deliberately inefficient to keep it O(n). Note especially that the function keeps checking target integers even after the answer has been found. If the function returned as soon as the answer was found, the number of times the outer loop ran would be bound by the size of the answer, which is bound by n. That change would make the run time O(n^2), even though it would be a lot faster.
Thanks to egon, swilden, and Stephen C for my inspiration. First, we know the bounds of the goal value because it cannot be greater than the size of the list. Also, a 1GB list could contain at most 134217728 (128 * 2^20) 64-bit integers.
Hashing part
I propose using hashing to dramatically reduce our search space. First, square root the size of the list. For a 1GB list, that's N=11,586. Set up an integer array of size N. Iterate through the list, and take the square root* of each number you find as your hash. In your hash table, increment the counter for that hash. Next, iterate through your hash table. The first bucket you find that is not equal to it's max size defines your new search space.
Bitmap part
Now set up a regular bit map equal to the size of your new search space, and again iterate through the source list, filling out the bitmap as you find each number in your search space. When you're done, the first unset bit in your bitmap will give you your answer.
This will be completed in O(n) time and O(sqrt(n)) space.
(*You could use use something like bit shifting to do this a lot more efficiently, and just vary the number and size of buckets accordingly.)
Well if there is only one missing number in a list of numbers, the easiest way to find the missing number is to sum the series and subtract each value in the list. The final value is the missing number.
int i = 0;
while ( i < Array.Length)
{
if (Array[i] == i + 1)
{
i++;
}
if (i < Array.Length)
{
if (Array[i] <= Array.Length)
{//SWap
int temp = Array[i];
int AnoTemp = Array[temp - 1];
Array[temp - 1] = temp;
Array[i] = AnoTemp;
}
else
i++;
}
}
for (int j = 0; j < Array.Length; j++)
{
if (Array[j] > Array.Length)
{
Console.WriteLine(j + 1);
j = Array.Length;
}
else
if (j == Array.Length - 1)
Console.WriteLine("Not Found !!");
}
}
Here's my answer written in Java:
Basic Idea:
1- Loop through the array throwing away duplicate positive, zeros, and negative numbers while summing up the rest, getting the maximum positive number as well, and keep the unique positive numbers in a Map.
2- Compute the sum as max * (max+1)/2.
3- Find the difference between the sums calculated at steps 1 & 2
4- Loop again from 1 to the minimum of [sums difference, max] and return the first number that is not in the map populated in step 1.
public static int solution(int[] A) {
if (A == null || A.length == 0) {
throw new IllegalArgumentException();
}
int sum = 0;
Map<Integer, Boolean> uniqueNumbers = new HashMap<Integer, Boolean>();
int max = A[0];
for (int i = 0; i < A.length; i++) {
if(A[i] < 0) {
continue;
}
if(uniqueNumbers.get(A[i]) != null) {
continue;
}
if (A[i] > max) {
max = A[i];
}
uniqueNumbers.put(A[i], true);
sum += A[i];
}
int completeSum = (max * (max + 1)) / 2;
for(int j = 1; j <= Math.min((completeSum - sum), max); j++) {
if(uniqueNumbers.get(j) == null) { //O(1)
return j;
}
}
//All negative case
if(uniqueNumbers.isEmpty()) {
return 1;
}
return 0;
}
As Stephen C smartly pointed out, the answer must be a number smaller than the length of the array. I would then find the answer by binary search. This optimizes the worst case (so the interviewer can't catch you in a 'what if' pathological scenario). In an interview, do point out you are doing this to optimize for the worst case.
The way to use binary search is to subtract the number you are looking for from each element of the array, and check for negative results.
I like the "guess zero" apprach. If the numbers were random, zero is highly probable. If the "examiner" set a non-random list, then add one and guess again:
LowNum=0
i=0
do forever {
if i == N then leave /* Processed entire array */
if array[i] == LowNum {
LowNum++
i=0
}
else {
i++
}
}
display LowNum
The worst case is n*N with n=N, but in practice n is highly likely to be a small number (eg. 1)
I am not sure if I got the question. But if for list 1,2,3,5,6 and the missing number is 4, then the missing number can be found in O(n) by:
(n+2)(n+1)/2-(n+1)n/2
EDIT: sorry, I guess I was thinking too fast last night. Anyway, The second part should actually be replaced by sum(list), which is where O(n) comes. The formula reveals the idea behind it: for n sequential integers, the sum should be (n+1)*n/2. If there is a missing number, the sum would be equal to the sum of (n+1) sequential integers minus the missing number.
Thanks for pointing out the fact that I was putting some middle pieces in my mind.
Well done Ants Aasma! I thought about the answer for about 15 minutes and independently came up with an answer in a similar vein of thinking to yours:
#define SWAP(x,y) { numerictype_t tmp = x; x = y; y = tmp; }
int minNonNegativeNotInArr (numerictype_t * a, size_t n) {
int m = n;
for (int i = 0; i < m;) {
if (a[i] >= m || a[i] < i || a[i] == a[a[i]]) {
m--;
SWAP (a[i], a[m]);
continue;
}
if (a[i] > i) {
SWAP (a[i], a[a[i]]);
continue;
}
i++;
}
return m;
}
m represents "the current maximum possible output given what I know about the first i inputs and assuming nothing else about the values until the entry at m-1".
This value of m will be returned only if (a[i], ..., a[m-1]) is a permutation of the values (i, ..., m-1). Thus if a[i] >= m or if a[i] < i or if a[i] == a[a[i]] we know that m is the wrong output and must be at least one element lower. So decrementing m and swapping a[i] with the a[m] we can recurse.
If this is not true but a[i] > i then knowing that a[i] != a[a[i]] we know that swapping a[i] with a[a[i]] will increase the number of elements in their own place.
Otherwise a[i] must be equal to i in which case we can increment i knowing that all the values of up to and including this index are equal to their index.
The proof that this cannot enter an infinite loop is left as an exercise to the reader. :)
The Dafny fragment from Ants' answer shows why the in-place algorithm may fail. The requires pre-condition describes that the values of each item must not go beyond the bounds of the array.
method AntsAasma(A: array<int>) returns (M: int)
requires A != null && forall N :: 0 <= N < A.Length ==> 0 <= A[N] < A.Length;
modifies A;
{
// Pass 1, move every value to the position of its value
var N := A.Length;
var cursor := 0;
while (cursor < N)
{
var target := A[cursor];
while (0 <= target < N && target != A[target])
{
var new_target := A[target];
A[target] := target;
target := new_target;
}
cursor := cursor + 1;
}
// Pass 2, find first location where the index doesn't match the value
cursor := 0;
while (cursor < N)
{
if (A[cursor] != cursor)
{
return cursor;
}
cursor := cursor + 1;
}
return N;
}
Paste the code into the validator with and without the forall ... clause to see the verification error. The second error is a result of the verifier not being able to establish a termination condition for the Pass 1 loop. Proving this is left to someone who understands the tool better.
Here's an answer in Java that does not modify the input and uses O(N) time and N bits plus a small constant overhead of memory (where N is the size of the list):
int smallestMissingValue(List<Integer> values) {
BitSet bitset = new BitSet(values.size() + 1);
for (int i : values) {
if (i >= 0 && i <= values.size()) {
bitset.set(i);
}
}
return bitset.nextClearBit(0);
}
def solution(A):
index = 0
target = []
A = [x for x in A if x >=0]
if len(A) ==0:
return 1
maxi = max(A)
if maxi <= len(A):
maxi = len(A)
target = ['X' for x in range(maxi+1)]
for number in A:
target[number]= number
count = 1
while count < maxi+1:
if target[count] == 'X':
return count
count +=1
return target[count-1] + 1
Got 100% for the above solution.
1)Filter negative and Zero
2)Sort/distinct
3)Visit array
Complexity: O(N) or O(N * log(N))
using Java8
public int solution(int[] A) {
int result = 1;
boolean found = false;
A = Arrays.stream(A).filter(x -> x > 0).sorted().distinct().toArray();
//System.out.println(Arrays.toString(A));
for (int i = 0; i < A.length; i++) {
result = i + 1;
if (result != A[i]) {
found = true;
break;
}
}
if (!found && result == A.length) {
//result is larger than max element in array
result++;
}
return result;
}
An unordered_set can be used to store all the positive numbers, and then we can iterate from 1 to length of unordered_set, and see the first number that does not occur.
int firstMissingPositive(vector<int>& nums) {
unordered_set<int> fre;
// storing each positive number in a hash.
for(int i = 0; i < nums.size(); i +=1)
{
if(nums[i] > 0)
fre.insert(nums[i]);
}
int i = 1;
// Iterating from 1 to size of the set and checking
// for the occurrence of 'i'
for(auto it = fre.begin(); it != fre.end(); ++it)
{
if(fre.find(i) == fre.end())
return i;
i +=1;
}
return i;
}
Solution through basic javascript
var a = [1, 3, 6, 4, 1, 2];
function findSmallest(a) {
var m = 0;
for(i=1;i<=a.length;i++) {
j=0;m=1;
while(j < a.length) {
if(i === a[j]) {
m++;
}
j++;
}
if(m === 1) {
return i;
}
}
}
console.log(findSmallest(a))
Hope this helps for someone.
With python it is not the most efficient, but correct
#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
import datetime
# write your code in Python 3.6
def solution(A):
MIN = 0
MAX = 1000000
possible_results = range(MIN, MAX)
for i in possible_results:
next_value = (i + 1)
if next_value not in A:
return next_value
return 1
test_case_0 = [2, 2, 2]
test_case_1 = [1, 3, 44, 55, 6, 0, 3, 8]
test_case_2 = [-1, -22]
test_case_3 = [x for x in range(-10000, 10000)]
test_case_4 = [x for x in range(0, 100)] + [x for x in range(102, 200)]
test_case_5 = [4, 5, 6]
print("---")
a = datetime.datetime.now()
print(solution(test_case_0))
print(solution(test_case_1))
print(solution(test_case_2))
print(solution(test_case_3))
print(solution(test_case_4))
print(solution(test_case_5))
def solution(A):
A.sort()
j = 1
for i, elem in enumerate(A):
if j < elem:
break
elif j == elem:
j += 1
continue
else:
continue
return j
this can help:
0- A is [5, 3, 2, 7];
1- Define B With Length = A.Length; (O(1))
2- initialize B Cells With 1; (O(n))
3- For Each Item In A:
if (B.Length <= item) then B[Item] = -1 (O(n))
4- The answer is smallest index in B such that B[index] != -1 (O(n))
I've been working on topcoder recently and I stumbled upon this question which I can't quite make understand.
The question is to find F(n) = f(1)+f(2)+....+f(n) for a given "n" such that f(n) is the largest odd divisor for n.
There are many trivial solutions for the answer; however, I found this solution very intriguing.
int compute(n) {
if(n==0) return 0;
long k = (n+1)/2;
return k*k + compute(n/2);
}
However, I don't quite understand how to obtain a recursive relation from a problem statement such as this. Could someone help out?
I believe they are trying to use the following facts:
f(2k+1) = 2k+1, i.e. the largest odd divisor of an odd number is the number itself.
f(2k) = f(k). i.e the largest odd divisor of an even number 2m is same as the largest odd divisor of the number m.
Sum of first k odd numbers is equal to k^2.
Now split {1,2,..., 2m+1} as {1,3,5,7,...} and {2,4,6,...,2m} and try to apply the above facts.
You can use dynamic approach also using auxiliary spaces
int sum=0;
int a[n+1];
for(int i=1;i<=n;i++){
if(i%2!=0)
a[i] = i;
else
a[i] = a[i/2];
}
for(int i=1;i<=n;i++){
sum+=a[i];
}
cout<<sum;
As when number is odd then the number itself will be the greatest odd divisor and a[i] will store it's value and when number is even then the a[number/2] will be stored in a[i] because for even number the greatest odd divisor of number/2 will be the greatest odd divisor of the number.
It can also be solved using three cases when number is odd then add number itself else if number is power of 2 then add 1 else if number is even except power of 2 divide it by 2 till you get odd and add that odd to sum.
I cannot see how that algorithm could possible work for the problem you described. (I'm going to assume that "N" and "n" refer to the same variable).
Given n = 12.
The largest odd divisor is 3 (the others are 1, 2, 4, 6 & 12)
F(12) is therefor f(1) + f(2) + f(3) or 1 + 1 + 3 or 5.
Using this algorithm:
k = (12+1)/2 or 6
and we return 6 * 6 + f(6), or 36 + some number which is not going to be negative 31.
if this were Java, I'd say:
import java.util.*;
int sum_largest_odd_factors (int n){
ArrayList<Integer> array = new ArrayList();//poorly named, I know
array.add(1);
for(int j = 2; j <= n; j++){
array.add(greatestOddFactor(j));
}
int sum = 0;
for(int i = 0; i < array.size(); i++){
sum += array.get(i);
}
return sum;
}
int greatestOddFactor(int n){
int greatestOdd = 1;
for(int i = n-((n%2)+1); i >= 1; i-=2){
//i: starts at n if odd or n-1 if even
if(n%i == 0){
greatestOdd = i;
break;
//stop when reach first odd factor b/c it's the largest
}
}
return greatestOdd;
}
This is admittedly tedious and probably an O(n^2) operation, but will work every time. I'll leave it to you to translate to C++ as Java and J are the only languages I can work with (and even that on a low level). I'm curious as to what ingenious algorithms other people can come up with to make this much quicker.
IF u are looking for sum of all the odd divisors till n..
Sum of the all odd divisors of the first n numbers
...
for(long long int i=1;i<=r;i=i+2)
{
sum1=sum1+i*(r/i);
}
for sum of all divisors in a range l to r
for(long long int i=1;i<=r;i=i+2)
{
sum1=sum1+i*(r/i);
}
for(long long int i=1;i<l;i=i+2)
{
sum2=sum2+i*((l-1)/i);
}
ans=sum1-sum2;;;
THANK YOU!!
Given a list of integers, how can I best find an integer that is not in the list?
The list can potentially be very large, and the integers might be large (i.e. BigIntegers, not just 32-bit ints).
If it makes any difference, the list is "probably" sorted, i.e. 99% of the time it will be sorted, but I cannot rely on always being sorted.
Edit -
To clarify, given the list {0, 1, 3, 4, 7}, examples of acceptable solutions would be -2, 2, 8 and 10012, but I would prefer to find the smallest, non-negative solution (i.e. 2) if there is an algorithm that can find it without needing to sort the entire list.
One easy way would be to iterate the list to get the highest value n, then you know that n+1 is not in the list.
Edit:
A method to find the smallest positive unused number would be to start from zero and scan the list for that number, starting over and increase if you find the number. To make it more efficient, and to make use of the high probability of the list being sorted, you can move numbers that are smaller than the current to an unused part of the list.
This method uses the beginning of the list as storage space for lower numbers, the startIndex variable keeps track of where the relevant numbers start:
public static int GetSmallest(int[] items) {
int startIndex = 0;
int result = 0;
int i = 0;
while (i < items.Length) {
if (items[i] == result) {
result++;
i = startIndex;
} else {
if (items[i] < result) {
if (i != startIndex) {
int temp = items[startIndex];
items[startIndex] = items[i];
items[i] = temp;
}
startIndex++;
}
i++;
}
}
return result;
}
I made a performance test where I created lists with 100000 random numbers from 0 to 19999, which makes the average lowest number around 150. On test runs (with 1000 test lists each), the method found the smallest number in unsorted lists by average in 8.2 ms., and in sorted lists by average in 0.32 ms.
(I haven't checked in what state the method leaves the list, as it may swap some items in it. It leaves the list containing the same items, at least, and as it moves smaller values down the list I think that it should actually become more sorted for each search.)
If the number doesn't have any restrictions, then you can do a linear search to find the maximum value in the list and return the number that is one larger.
If the number does have restrictions (e.g. max+1 and min-1 could overflow), then you can use a sorting algorithm that works well on partially sorted data. Then go through the list and find the first pair of numbers v_i and v_{i+1} that are not consecutive. Return v_i + 1.
To get the smallest non-negative integer (based on the edit in the question), you can either:
Sort the list using a partial sort as above. Binary search the list for 0. Iterate through the list from this value until you find a "gap" between two numbers. If you get to the end of the list, return the last value + 1.
Insert the values into a hash table. Then iterate from 0 upwards until you find an integer not in the list.
Unless it is sorted you will have to do a linear search going item by item until you find a match or you reach the end of the list. If you can guarantee it is sorted you could always use the array method of BinarySearch or just roll your own binary search.
Or like Jason mentioned there is always the option of using a Hashtable.
"probably sorted" means you have to treat it as being completely unsorted. If of course you could guarantee it was sorted this is simple. Just look at the first or last element and add or subtract 1.
I got 100% in both correctness & performance,
You should use quick sorting which is N log(N) complexity.
Here you go...
public int solution(int[] A) {
if (A != null && A.length > 0) {
quickSort(A, 0, A.length - 1);
}
int result = 1;
if (A.length == 1 && A[0] < 0) {
return result;
}
for (int i = 0; i < A.length; i++) {
if (A[i] <= 0) {
continue;
}
if (A[i] == result) {
result++;
} else if (A[i] < result) {
continue;
} else if (A[i] > result) {
return result;
}
}
return result;
}
private void quickSort(int[] numbers, int low, int high) {
int i = low, j = high;
int pivot = numbers[low + (high - low) / 2];
while (i <= j) {
while (numbers[i] < pivot) {
i++;
}
while (numbers[j] > pivot) {
j--;
}
if (i <= j) {
exchange(numbers, i, j);
i++;
j--;
}
}
// Recursion
if (low < j)
quickSort(numbers, low, j);
if (i < high)
quickSort(numbers, i, high);
}
private void exchange(int[] numbers, int i, int j) {
int temp = numbers[i];
numbers[i] = numbers[j];
numbers[j] = temp;
}
Theoretically, find the max and add 1. Assuming you're constrained by the max value of the BigInteger type, sort the list if unsorted, and look for gaps.
Are you looking for an on-line algorithm (since you say the input is arbitrarily large)? If so, take a look at Odds algorithm.
Otherwise, as already suggested, hash the input, search and turn on/off elements of boolean set (the hash indexes into the set).
There are several approaches:
find the biggest int in the list and store it in x. x+1 will not be in the list. The same applies with using min() and x-1.
When N is the size of the list, allocate an int array with the size (N+31)/32. For each element in the list, set the bit v&31 (where v is the value of the element) of the integer at array index i/32. Ignore values where i/32 >= array.length. Now search for the first array item which is '!= 0xFFFFFFFF' (for 32bit integers).
If you can't guarantee it is sorted, then you have a best possible time efficiency of O(N) as you have to look at every element to make sure your final choice is not there. So the question is then:
Can it be done in O(N)?
What is the best space efficiency?
Chris Doggett's solution of find the max and add 1 is both O(N) and space efficient (O(1) memory usage)
If you want only probably the best answer then it is a different question.
Unless you are 100% sure it is sorted, the quickest algorithm still has to look at each number in the list at least once to at least verify that a number is not in the list.
Assuming this is the problem I'm thinking of:
You have a set of all ints in the range 1 to n, but one of those ints is missing. Tell me which of int is missing.
This is a pretty easy problem to solve with some simple math knowledge. It's known that the sum of the range 1 .. n is equal to n(n+1) / 2. So, let W = n(n+1) / 2 and let Y = the sum of the numbers in your set. The integer that is missing from your set, X, would then be X = W - Y.
Note: SO needs to support MathML
If this isn't that problem, or if it's more general, then one of the other solutions is probably right. I just can't really tell from the question since it's kind of vague.
Edit: Well, since the edit, I can see that my answer is absolutely wrong. Fun math, none-the-less.
I've solved this using Linq and a binary search. I got 100% across the board. Here's my code:
using System.Collections.Generic;
using System.Linq;
class Solution {
public int solution(int[] A) {
if (A == null) {
return 1;
} else {
if (A.Length == 0) {
return 1;
}
}
List<int> list_test = new List<int>(A);
list_test = list_test.Distinct().ToList();
list_test = list_test.Where(i => i > 0).ToList();
list_test.Sort();
if (list_test.Count == 0) {
return 1;
}
int lastValue = list_test[list_test.Count - 1];
if (lastValue <= 0) {
return 1;
}
int firstValue = list_test[0];
if (firstValue > 1) {
return 1;
}
return BinarySearchList(list_test);
}
int BinarySearchList(List<int> list) {
int returnable = 0;
int tempIndex;
int[] boundaries = new int[2] { 0, list.Count - 1 };
int testCounter = 0;
while (returnable == 0 && testCounter < 2000) {
tempIndex = (boundaries[0] + boundaries[1]) / 2;
if (tempIndex != boundaries[0]) {
if (list[tempIndex] > tempIndex + 1) {
boundaries[1] = tempIndex;
} else {
boundaries[0] = tempIndex;
}
} else {
if (list[tempIndex] > tempIndex + 1) {
returnable = tempIndex + 1;
} else {
returnable = tempIndex + 2;
}
}
testCounter++;
}
if (returnable == list[list.Count - 1]) {
returnable++;
}
return returnable;
}
}
The longest execution time was 0.08s on the Large_2 test
You need the list to be sorted. That means either knowing it is sorted, or sorting it.
Sort the list. Skip this step if the list is known to be sorted. O(n lg n)
Remove any duplicate elements. Skip this step if elements are already guaranteed distinct. O(n)
Let B be the position of 1 in the list using a binary search. O(lg n)
If 1 isn't in the list, return 1. Note that if all elements from 1 to n are in the list, then the element at B+n must be n+1. O(1)
Now perform a sortof binary search starting with min = B, max = end of the list. Call the position of the pivot P. If the element at P is greater than (P-B+1), recurse on the range [min, pivot], otherwise recurse on the range (pivot, max]. Continue until min=pivot=max O(lg n)
Your answer is (the element at pivot-1)+1, unless you are at the end of the list and (P-B+1) = B in which case it is the last element + 1. O(1)
This is very efficient if the list is already sorted and has distinct elements. You can do optimistic checks to make it faster when the list has only non-negative elements or when the list doesn't include the value 1.
Just gave an interview where they asked me this question. The answer to this problem can be found using worst case analysis. The upper bound for the smallest natural number present on the list would be length(list). This is because, the worst case for the smallest number present in the list given the length of the list is the list 0,1,2,3,4,5....length(list)-1.
Therefore for all lists, smallest number not present in the list is less than equal to length of the list. Therefore, initiate a list t with n=length(list)+1 zeros. Corresponding to every number i in the list (less than equal to the length of the list) mark assign the value 1 to t[i]. The index of the first zero in the list is the smallest number not present in the list. And since, the lower bound on this list n-1, for at least one index j