How can I select the minimum sub-sequence using LINQ? - linq

If I have an array of golf results:
-3, +5, -3, 0, +1, +8, 0, +6, +2, -8, +5
I need to find a sequence of three adjacent numbers which have the minimum sum. For this example, the sub-sequences would be:
[-3, +5, -3]
[+5, -3, 0]
[-3, 0, +1]
... etc ...
[+2, -8, +5]
And the minimum sequence would be [-3, 0, +1] having a sum of -2.

You could use this LINQ query:
int[] golfResult = { -3, +5, -3, 0, +1, +8, 0, +6, +2, -8, +5 };
var combinations = from i in Enumerable.Range(0, golfResult.Length - 2)
select new {
i1 = golfResult[i],
i2 = golfResult[i + 1],
i3 = golfResult[i + 2],
};
var min = combinations.OrderBy(x => x.i1 + x.i2 + x.i3).First();
int[] minGolfResult = { min.i1, min.i2, min.i3 }; // -3, 0, +1
Of course you need to check if there are at least three results in the array.

I'm not sure why you would do this with LINQ. I think a straight up iterative solution is easier to understand:
int[] scores = new[] { -3, 5, -3, 0, 1, 8, 0, 6, 2, -8, 5 };
int minimumSubsequence = int.MaxValue;
int minimumSubsequenceIndex = -1;
for (int i = 0; i < scores.Length - 2; i++)
{
int sum = scores[i] + scores[i + 1] + scores[i + 2];
if (sum < minimumSubsequence)
{
minimumSubsequence = sum;
minimumSubsequenceIndex = i;
}
}
// minimumSubsequenceIndex is index of the first item in the minimum subsequence
// minimumSubsequence is the minimum subsequence's sum.

If you really want to do it in LINQ, you can go this way:
int length = 3;
var scores = new List<int>() { -3, +5, -3, 0, +1, +8, 0, +6, +2, -8, +5 };
var results =
scores
.Select((value, index) => new
{
Value = scores.Skip(index - length + 1).Take(length).Sum(),
Index = index - length + 1
})
.Skip(length - 1)
.OrderBy(x => x.Value)
.First()
.Index;
This creates a second list that sums all length preceeding elements and then sorts it. You have

Related

What is the best approach to solve this problem?

If an array contained [1, 10, 3, 5, 2, 7] and k = 2, combine the set as {110, 35, 27}, sort the set {27, 35, 110} and split the set into array as [2, 7, 3, 5, 1, 10]
Here is a way to implement this in JavaScript:
const k = 2;
const arr = [1, 10, 3, 5, 2, 7];
// STEP 1 - Combine the set by k pair number
const setCombined = []
for(let i = 0; i < arr.length; ++i) {
if(i % k === 0) {
setCombined.push(parseInt(arr.slice(i, i + k ).join('')))
}
}
console.log('STEP1 - combined: \n', setCombined);
// STEP 2 - Sort
const sortedArray = setCombined.sort((a, b) => a - b)
console.log('STEP2 - sorted: \n', sortedArray);
// STEP 3 - Split sorted
const splitArray = sortedArray.join('').split('').map(e => parseInt(e))
console.log('STEP3 - split: \n', splitArray);
I was not sure though when you said to combine set, if you really ment to keep only unique values or not... Let me know

Linearly reading a multi-dimensional array obeying dimensional sub-sectioning

I have an API for reading multi-dimensional arrays, requiring to pass a vector of ranges to read sub-rectangles (or hypercubes) from the backing array. I want to read this array "linearly", all elements in some given order with arbitrary chunk sizes. Thus, the task is with an off and a len, to translate the elements covered by this range into the smallest possible set of hyper-cubes, i.e. the smallest number of read commands issued in the API.
For example, we can calculate index vectors for the set of dimensions giving a linear index:
def calcIndices(off: Int, shape: Vector[Int]): Vector[Int] = {
val modsDivs = shape zip shape.scanRight(1)(_ * _).tail
modsDivs.map { case (mod, div) =>
(off / div) % mod
}
}
Let's say the shape is this, representing an array with rank 4 and 120 elements in total:
val sz = Vector(2, 3, 4, 5)
val num = sz.product // 120
A utility to print these index vectors for a range of linear offsets:
def printIndices(off: Int, len: Int): Unit =
(off until (off + len)).map(calcIndices(_, sz))
.map(_.mkString("[", ", ", "]")).foreach(println)
We can generate all those vectors:
printIndices(0, num)
[0, 0, 0, 0]
[0, 0, 0, 1]
[0, 0, 0, 2]
[0, 0, 0, 3]
[0, 0, 0, 4]
[0, 0, 1, 0]
[0, 0, 1, 1]
[0, 0, 1, 2]
[0, 0, 1, 3]
[0, 0, 1, 4]
[0, 0, 2, 0]
[0, 0, 2, 1]
[0, 0, 2, 2]
[0, 0, 2, 3]
[0, 0, 2, 4]
[0, 0, 3, 0]
[0, 0, 3, 1]
[0, 0, 3, 2]
[0, 0, 3, 3]
[0, 0, 3, 4]
[0, 1, 0, 0]
...
[1, 2, 1, 4]
[1, 2, 2, 0]
[1, 2, 2, 1]
[1, 2, 2, 2]
[1, 2, 2, 3]
[1, 2, 2, 4]
[1, 2, 3, 0]
[1, 2, 3, 1]
[1, 2, 3, 2]
[1, 2, 3, 3]
[1, 2, 3, 4]
Let's look at an example chunk that should be read,
the first six elements:
val off1 = 0
val len1 = 6
printIndices(off1, len1)
I will already partition the output by hand into hypercubes:
// first hypercube or read
[0, 0, 0, 0]
[0, 0, 0, 1]
[0, 0, 0, 2]
[0, 0, 0, 3]
[0, 0, 0, 4]
// second hypercube or read
[0, 0, 1, 0]
So the task is to define a method
def partition(shape: Vector[Int], off: Int, len: Int): List[Vector[Range]]
which outputs the correct list and uses the smallest possible list size.
So for off1 and len1, we have the expected result:
val res1 = List(
Vector(0 to 0, 0 to 0, 0 to 0, 0 to 4),
Vector(0 to 0, 0 to 0, 1 to 1, 0 to 0)
)
assert(res1.map(_.map(_.size).product).sum == len1)
A second example, elements at indices 6 until 22, with manual partitioning giving three hypercubes or read commands:
val off2 = 6
val len2 = 16
printIndices(off2, len2)
// first hypercube or read
[0, 0, 1, 1]
[0, 0, 1, 2]
[0, 0, 1, 3]
[0, 0, 1, 4]
// second hypercube or read
[0, 0, 2, 0]
[0, 0, 2, 1]
[0, 0, 2, 2]
[0, 0, 2, 3]
[0, 0, 2, 4]
[0, 0, 3, 0]
[0, 0, 3, 1]
[0, 0, 3, 2]
[0, 0, 3, 3]
[0, 0, 3, 4]
// third hypercube or read
[0, 1, 0, 0]
[0, 1, 0, 1]
expected result:
val res2 = List(
Vector(0 to 0, 0 to 0, 1 to 1, 1 to 4),
Vector(0 to 0, 0 to 0, 2 to 3, 0 to 4),
Vector(0 to 0, 1 to 1, 0 to 0, 0 to 1)
)
assert(res2.map(_.map(_.size).product).sum == len2)
Note that for val off3 = 6; val len3 = 21, we would need four readings.
The idea of the following algorithm is as follows:
a point-of-interest (poi) is the left-most position
at which two index representations differ
(for example for [0, 0, 0, 1] and [0, 1, 0, 0] the poi is 1)
we recursively sub-divide the original (start, stop) linear index range
we use motions in two directions, first by keeping the start constant
and decreasing the stop through a special "ceil" operation on the start,
later by keeping the stop constant and increasing the start through
a special "floor" operation on the stop
for each sub range, we calculate the poi of the boundaries, and
we calculate "trunc" which is ceil or floor operation described above
if this trunc value is identical to its input, we add the entire region
and return
otherwise we recurse
the special "ceil" operation takes the previous start value and
increases the element at the poi index and zeroes the subsequent elements;
e.g. for [0, 0, 1, 1] and poi = 2, the ceil would be [0, 0, 2, 0]
the special "floor" operation takes the previous stop value and
zeroes the elements after the poi index;
e.g. for [0, 0, 1, 1], and poi = 2, the floor would be [0, 0, 1, 0]
Here is my implementation. First, a few utility functions:
def calcIndices(off: Int, shape: Vector[Int]): Vector[Int] = {
val modsDivs = (shape, shape.scanRight(1)(_ * _).tail, shape.indices).zipped
modsDivs.map { case (mod, div, idx) =>
val x = off / div
if (idx == 0) x else x % mod
}
}
def calcPOI(a: Vector[Int], b: Vector[Int], min: Int): Int = {
val res = (a.drop(min) zip b.drop(min)).indexWhere { case (ai,bi) => ai != bi }
if (res < 0) a.size else res + min
}
def zipToRange(a: Vector[Int], b: Vector[Int]): Vector[Range] =
(a, b).zipped.map { (ai, bi) =>
require (ai <= bi)
ai to bi
}
def calcOff(a: Vector[Int], shape: Vector[Int]): Int = {
val divs = shape.scanRight(1)(_ * _).tail
(a, divs).zipped.map(_ * _).sum
}
def indexTrunc(a: Vector[Int], poi: Int, inc: Boolean): Vector[Int] =
a.zipWithIndex.map { case (ai, i) =>
if (i < poi) ai
else if (i > poi) 0
else if (inc) ai + 1
else ai
}
Then the actual algorithm:
def partition(shape: Vector[Int], off: Int, len: Int): List[Vector[Range]] = {
val rankM = shape.size - 1
def loop(start: Int, stop: Int, poiMin: Int, dir: Boolean,
res0: List[Vector[Range]]): List[Vector[Range]] =
if (start == stop) res0 else {
val last = stop - 1
val s0 = calcIndices(start, shape)
val s1 = calcIndices(stop , shape)
val s1m = calcIndices(last , shape)
val poi = calcPOI(s0, s1m, poiMin)
val ti = if (dir) s0 else s1
val to = if (dir) s1 else s0
val st = if (poi >= rankM) to else indexTrunc(ti, poi, inc = dir)
val trunc = calcOff(st, shape)
val split = trunc != (if (dir) stop else start)
if (split) {
if (dir) {
val res1 = loop(start, trunc, poiMin = poi+1, dir = true , res0 = res0)
loop (trunc, stop , poiMin = 0 , dir = false, res0 = res1)
} else {
val s1tm = calcIndices(trunc - 1, shape)
val res1 = zipToRange(s0, s1tm) :: res0
loop (trunc, stop , poiMin = poi+1, dir = false, res0 = res1)
}
} else {
zipToRange(s0, s1m) :: res0
}
}
loop(off, off + len, poiMin = 0, dir = true, res0 = Nil).reverse
}
Examples:
val sz = Vector(2, 3, 4, 5)
partition(sz, 0, 6)
// result:
List(
Vector(0 to 0, 0 to 0, 0 to 0, 0 to 4), // first hypercube
Vector(0 to 0, 0 to 0, 1 to 1, 0 to 0) // second hypercube
)
partition(sz, 6, 21)
// result:
List(
Vector(0 to 0, 0 to 0, 1 to 1, 1 to 4), // first read
Vector(0 to 0, 0 to 0, 2 to 3, 0 to 4), // second read
Vector(0 to 0, 1 to 1, 0 to 0, 0 to 4), // third read
Vector(0 to 0, 1 to 1, 1 to 1, 0 to 1) // fourth read
)
The maximum number of reads, if I'm not mistaken, would be 2 * rank.

All Possible Tic Tac Toe Winning Combinations

I had an interview were I was asked a seemingly simple algorithm question: "Write an algorithm to return me all possible winning combinations for tic tac toe." I still can't figure out an efficient way to handle this. Is there a standard algorithm or common that should be applied to similar questions like this that I'm not aware of?
This is one of those problems that's actually simple enough for brute force and, while you could use combinatorics, graph theory, or many other complex tools to solve it, I'd actually be impressed by applicants that recognise the fact there's an easier way (at least for this problem).
There are only 39, or 19,683 possible combinations of placing x, o or <blank> in the grid, and not all of those are valid.
First, a valid game position is one where the difference between x and o counts is no more than one, since they have to alternate moves.
In addition, it's impossible to have a state where both sides have three in a row, so they can be discounted as well. If both have three in a row, then one of them would have won in the previous move.
There's actually another limitation in that it's impossible for one side to have won in two different ways without a common cell (again, they would have won in a previous move), meaning that:
XXX
OOO
XXX
cannot be achieved, while:
XXX
OOX
OOX
can be. But we can actually ignore that since there's no way to win two ways without a common cell without having already violated the "maximum difference of one" rule, since you need six cells for that, with the opponent only having three.
So I would simply use brute force and, for each position where the difference is zero or one between the counts, check the eight winning possibilities for both sides. Assuming only one of them has a win, that's a legal, winning game.
Below is a proof of concept in Python, but first the output of time when run on the process sending output to /dev/null to show how fast it is:
real 0m0.169s
user 0m0.109s
sys 0m0.030s
The code:
def won(c, n):
if c[0] == n and c[1] == n and c[2] == n: return 1
if c[3] == n and c[4] == n and c[5] == n: return 1
if c[6] == n and c[7] == n and c[8] == n: return 1
if c[0] == n and c[3] == n and c[6] == n: return 1
if c[1] == n and c[4] == n and c[7] == n: return 1
if c[2] == n and c[5] == n and c[8] == n: return 1
if c[0] == n and c[4] == n and c[8] == n: return 1
if c[2] == n and c[4] == n and c[6] == n: return 1
return 0
pc = [' ', 'x', 'o']
c = [0] * 9
for c[0] in range (3):
for c[1] in range (3):
for c[2] in range (3):
for c[3] in range (3):
for c[4] in range (3):
for c[5] in range (3):
for c[6] in range (3):
for c[7] in range (3):
for c[8] in range (3):
countx = sum([1 for x in c if x == 1])
county = sum([1 for x in c if x == 2])
if abs(countx-county) < 2:
if won(c,1) + won(c,2) == 1:
print " %s | %s | %s" % (pc[c[0]],pc[c[1]],pc[c[2]])
print "---+---+---"
print " %s | %s | %s" % (pc[c[3]],pc[c[4]],pc[c[5]])
print "---+---+---"
print " %s | %s | %s" % (pc[c[6]],pc[c[7]],pc[c[8]])
print
As one commenter has pointed out, there is one more restriction. The winner for a given board cannot have less cells than the loser since that means the loser just moved, despite the fact the winner had already won on the last move.
I won't change the code to take that into account but it would be a simple matter of checking who has the most cells (the last person that moved) and ensuring the winning line belonged to them.
Another way could be to start with each of the eight winning positions,
xxx ---
--- xxx
--- --- ... etc.,
and recursively fill in all legal combinations (start with inserting 2 o's, then add an x for each o ; avoid o winning positions):
xxx xxx xxx
oo- oox oox
--- o-- oox ... etc.,
Today I had an interview with Apple and I had the same question. I couldn't think well at that moment. Later one on, before going to a meeting I wrote the function for the combinations in 15 minutes, and when I came back from the meeting I wrote the validation function again in 15 minutes. I get nervous at interviews, Apple not trusts my resume, they only trust what they see in the interview, I don't blame them, many companies are the same, I just say that something in this hiring process doesn't look quite smart.
Anyways, here is my solution in Swift 4, there are 8 lines of code for the combinations function and 17 lines of code to check a valid board.
Cheers!!!
// Not used yet: 0
// Used with x : 1
// Used with 0 : 2
// 8 lines code to get the next combination
func increment ( _ list: inout [Int], _ base: Int ) -> Bool {
for digit in 0..<list.count {
list[digit] += 1
if list[digit] < base { return true }
list[digit] = 0
}
return false
}
let incrementTicTacToe = { increment(&$0, 3) }
let win0_ = [0,1,2] // [1,1,1,0,0,0,0,0,0]
let win1_ = [3,4,5] // [0,0,0,1,1,1,0,0,0]
let win2_ = [6,7,8] // [0,0,0,0,0,0,1,1,1]
let win_0 = [0,3,6] // [1,0,0,1,0,0,1,0,0]
let win_1 = [1,4,7] // [0,1,0,0,1,0,0,1,0]
let win_2 = [2,5,8] // [0,0,1,0,0,1,0,0,1]
let win00 = [0,4,8] // [1,0,0,0,1,0,0,0,1]
let win11 = [2,4,6] // [0,0,1,0,1,0,1,0,0]
let winList = [ win0_, win1_, win2_, win_0, win_1, win_2, win00, win11]
// 16 lines to check a valid board, wihtout countin lines of comment.
func winCombination (_ tictactoe: [Int]) -> Bool {
var count = 0
for win in winList {
if tictactoe[win[0]] == tictactoe[win[1]],
tictactoe[win[1]] == tictactoe[win[2]],
tictactoe[win[2]] != 0 {
// If the combination exist increment count by 1.
count += 1
}
if count == 2 {
return false
}
}
var indexes = Array(repeating:0, count:3)
for num in tictactoe { indexes[num] += 1 }
// '0' and 'X' must be used the same times or with a diference of one.
// Must one and only one valid combination
return abs(indexes[1] - indexes[2]) <= 1 && count == 1
}
// Test
var listToIncrement = Array(repeating:0, count:9)
var combinationsCount = 1
var winCount = 0
while incrementTicTacToe(&listToIncrement) {
if winCombination(listToIncrement) == true {
winCount += 1
}
combinationsCount += 1
}
print("There is \(combinationsCount) combinations including possible and impossible ones.")
print("There is \(winCount) combinations for wining positions.")
/*
There are 19683 combinations including possible and impossible ones.
There are 2032 combinations for winning positions.
*/
listToIncrement = Array(repeating:0, count:9)
var listOfIncremented = ""
for _ in 0..<1000 { // Win combinations for the first 1000 combinations
_ = incrementTicTacToe(&listToIncrement)
if winCombination(listToIncrement) == true {
listOfIncremented += ", \(listToIncrement)"
}
}
print("List of combinations: \(listOfIncremented)")
/*
List of combinations: , [2, 2, 2, 1, 1, 0, 0, 0, 0], [1, 1, 1, 2, 2, 0, 0, 0, 0],
[2, 2, 2, 1, 0, 1, 0, 0, 0], [2, 2, 2, 0, 1, 1, 0, 0, 0], [2, 2, 0, 1, 1, 1, 0, 0, 0],
[2, 0, 2, 1, 1, 1, 0, 0, 0], [0, 2, 2, 1, 1, 1, 0, 0, 0], [1, 1, 1, 2, 0, 2, 0, 0, 0],
[1, 1, 1, 0, 2, 2, 0, 0, 0], [1, 1, 0, 2, 2, 2, 0, 0, 0], [1, 0, 1, 2, 2, 2, 0, 0, 0],
[0, 1, 1, 2, 2, 2, 0, 0, 0], [1, 2, 2, 1, 0, 0, 1, 0, 0], [2, 2, 2, 1, 0, 0, 1, 0, 0],
[2, 2, 1, 0, 1, 0, 1, 0, 0], [2, 2, 2, 0, 1, 0, 1, 0, 0], [2, 2, 2, 1, 1, 0, 1, 0, 0],
[2, 0, 1, 2, 1, 0, 1, 0, 0], [0, 2, 1, 2, 1, 0, 1, 0, 0], [2, 2, 1, 2, 1, 0, 1, 0, 0],
[1, 2, 0, 1, 2, 0, 1, 0, 0], [1, 0, 2, 1, 2, 0, 1, 0, 0], [1, 2, 2, 1, 2, 0, 1, 0, 0],
[2, 2, 2, 0, 0, 1, 1, 0, 0]
*/
This is a java equivalent code sample
package testit;
public class TicTacToe {
public static void main(String[] args) {
// TODO Auto-generated method stub
// 0 1 2
// 3 4 5
// 6 7 8
char[] pc = {' ' ,'o', 'x' };
char[] c = new char[9];
// initialize c
for (int i = 0; i < 9; i++)
c[i] = pc[0];
for (int i = 0; i < 3; i++) {
c[0] = pc[i];
for (int j = 0; j < 3; j++) {
c[1] = pc[j];
for (int k = 0; k < 3; k++) {
c[2] = pc[k];
for (int l = 0; l < 3; l++) {
c[3] = pc[l];
for (int m = 0; m < 3; m++) {
c[4] = pc[m];
for (int n = 0; n < 3; n++) {
c[5] = pc[n];
for (int o = 0; o < 3; o++) {
c[6] = pc[o];
for (int p = 0; p < 3; p++) {
c[7] = pc[p];
for (int q = 0; q < 3; q++) {
c[8] = pc[q];
int countx = 0;
int county = 0;
for(int r = 0 ; r<9 ; r++){
if(c[r] == 'x'){
countx = countx + 1;
}
else if(c[r] == 'o'){
county = county + 1;
}
}
if(Math.abs(countx - county) < 2){
if(won(c, pc[2])+won(c, pc[1]) == 1 ){
System.out.println(c[0] + " " + c[1] + " " + c[2]);
System.out.println(c[3] + " " + c[4] + " " + c[5]);
System.out.println(c[6] + " " + c[7] + " " + c[8]);
System.out.println("*******************************************");
}
}
}
}
}
}
}
}
}
}
}
}
public static int won(char[] c, char n) {
if ((c[0] == n) && (c[1] == n) && (c[2] == n))
return 1;
else if ((c[3] == n) && (c[4] == n) && (c[5] == n))
return 1;
else if ((c[6] == n) && (c[7] == n) && (c[8] == n))
return 1;
else if ((c[0] == n) && (c[3] == n) && (c[6] == n))
return 1;
else if ((c[1] == n) && (c[4] == n) && (c[7] == n))
return 1;
else if ((c[2] == n) && (c[5] == n) && (c[8] == n))
return 1;
else if ((c[0] == n) && (c[4] == n) && (c[8] == n))
return 1;
else if ((c[2] == n) && (c[4] == n) && (c[6] == n))
return 1;
else
return 0;
}
}
`
Below Solution generates all possible combinations using recursion
It has eliminated impossible combinations and returned 888 Combinations
Below is a working code Possible winning combinations of the TIC TAC TOE game
const players = ['X', 'O'];
let gameBoard = Array.from({ length: 9 });
const winningCombination = [
[ 0, 1, 2 ],
[ 3, 4, 5 ],
[ 6, 7, 8 ],
[ 0, 3, 6 ],
[ 1, 4, 7 ],
[ 2, 5, 8 ],
[ 0, 4, 8 ],
[ 2, 4, 6 ],
];
const isWinningCombination = (board)=> {
if((Math.abs(board.filter(a => a === players[0]).length -
board.filter(a => a === players[1]).length)) > 1) {
return false
}
let winningComb = 0;
players.forEach( player => {
winningCombination.forEach( combinations => {
if (combinations.every(combination => board[combination] === player )) {
winningComb++;
}
});
});
return winningComb === 1;
}
const getCombinations = (board) => {
let currentBoard = [...board];
const firstEmptySquare = board.indexOf(undefined)
if (firstEmptySquare === -1) {
return isWinningCombination(board) ? [board] : [];
} else {
return [...players, ''].reduce((prev, next) => {
currentBoard[firstEmptySquare] = next;
if(next !== '' && board.filter(a => a === next).length > (gameBoard.length / players.length)) {
return [...prev]
}
return [board, ...prev, ...getCombinations(currentBoard)]
}, [])
}
}
const startApp = () => {
let combination = getCombinations(gameBoard).filter(board =>
board.every(item => !(item === undefined)) && isWinningCombination(board)
)
printCombination(combination)
}
const printCombination = (combination)=> {
const ulElement = document.querySelector('.combinations');
combination.forEach(comb => {
let node = document.createElement("li");
let nodePre = document.createElement("pre");
let textnode = document.createTextNode(JSON.stringify(comb));
nodePre.appendChild(textnode);
node.appendChild(nodePre);
ulElement.appendChild(node);
})
}
startApp();
This discovers all possible combinations for tic tac toe (255,168) -- written in JavaScript using recursion. It is not optimized, but gets you what you need.
const [EMPTY, O, X] = [0, 4, 1]
let count = 0
let coordinate = [
EMPTY, EMPTY, EMPTY,
EMPTY, EMPTY, EMPTY,
EMPTY, EMPTY, EMPTY
]
function reducer(arr, sumOne, sumTwo = null) {
let func = arr.reduce((sum, a) => sum + a, 0)
if((func === sumOne) || (func === sumTwo)) return true
}
function checkResult() {
let [a1, a2, a3, b1, b2, b3, c1, c2, c3] = coordinate
if(reducer([a1,a2,a3], 3, 12)) return true
if(reducer([a1,b2,c3], 3, 12)) return true
if(reducer([b1,b2,b3], 3, 12)) return true
if(reducer([c1,c2,c3], 3, 12)) return true
if(reducer([a3,b2,c1], 3, 12)) return true
if(reducer([a1,b1,c1], 3, 12)) return true
if(reducer([a2,b2,c2], 3, 12)) return true
if(reducer([a3,b3,c3], 3, 12)) return true
if(reducer([a1,a2,a3,b1,b2,b3,c1,c2,c3], 21)) return true
return false
}
function nextPiece() {
let [countX, countO] = [0, 0]
for(let i = 0; i < coordinate.length; i++) {
if(coordinate[i] === X) countX++
if(coordinate[i] === O) countO++
}
return countX === countO ? X : O
}
function countGames() {
if (checkResult()) {
count++
}else {
for (let i = 0; i < 9; i++) {
if (coordinate[i] === EMPTY) {
coordinate[i] = nextPiece()
countGames()
coordinate[i] = EMPTY
}
}
}
}
countGames()
console.log(count)
I separated out the checkResult returns in case you want to output various win conditions.
Could be solved with brute force but keep in mind the corner cases like player2 can't move when player1 has won and vice versa. Also remember Difference between moves of player1 and player can't be greater than 1 and less than 0.
I have written code for validating whether provided combination is valid or not, might soon post on github.

closest to zero [absolute value] sum of consecutive subsequence of a sequence of real values

this is an algorithmic playground for me! I've seen variations of this problem tackling maximum consecutive subsequence but this is another variation as well.
the formal def:
given A[1..n] find i and j so that abs(A[i]+A[i+1]+...+A[j]) is closest to zero among others.
I'm wondering how to get O(n log^2 n), or even O(n log n) solution.
Calculate the cumulative sum.
Sort it.
Find the sequential pair with least difference.
function leastSubsequenceSum(values) {
var n = values.length;
// Store the cumulative sum along with the index.
var sums = [];
sums[0] = { index: 0, sum: 0 };
for (var i = 1; i <= n; i++) {
sums[i] = {
index: i,
sum: sums[i-1].sum + values[i-1]
};
}
// Sort by cumulative sum
sums.sort(function (a, b) {
return a.sum == b.sum ? b.index - a.index : a.sum - b.sum;
});
// Find the sequential pair with the least difference.
var bestI = -1;
var bestDiff = null;
for (var i = 1; i <= n; i++) {
var diff = Math.abs(sums[i-1].sum - sums[i].sum);
if (bestDiff === null || diff < bestDiff) {
bestDiff = diff;
bestI = i;
}
}
// Just to make sure start < stop
var start = sums[bestI-1].index;
var stop = sums[bestI].index;
if (start > stop) {
var tmp = start;
start = stop;
stop = tmp;
}
return [start, stop-1, bestDiff];
}
Examples:
>>> leastSubsequenceSum([10, -5, 3, -4, 11, -4, 12, 20]);
[2, 3, 1]
>>> leastSubsequenceSum([5, 6, -1, -9, -2, 16, 19, 1, -4, 9]);
[0, 4, 1]
>>> leastSubsequenceSum([3, 16, 8, -10, -1, -8, -3, 10, -2, -4]);
[6, 9, 1]
In the first example, [2, 3, 1] means, sum from index 2 to 3 (inclusive), and you get an absolute sum of 1:
[10, -5, 3, -4, 11, -4, 12, 20]
^^^^^

Unclear why this coin change algorithm works

I worked with someone yesterday from SO on getting my coin changing algorithm to work.
It seems to me that,
first, makeChange1() calls getChange1() with the change amount...
getChange1() checks if amount == 0, if so, it will print the list
if amount >= current denomination, it will add that denomination to the list then recur, decrementing the amount by the current denomination...
if amount < current denomination, it recurs on to the next denomination... (index + 1)
I don't understand how getChange() will be called again once the amount equals 0... doesn't it just say that if amount == 0, it will just print out the list?
if (amount == 0) {
System.out.print(total + ", ");
}
Therefore, because of this I'm not sure how the rest of the permutations will be completed... A picture would reallly help!
Input:
12 cents
Output:
[10, 1, 1], [5, 5, 1, 1], [5, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Code:
public void makeChange1(int amount) {
getChange1(amount, new ArrayList<Integer>(), 0);
}
public void getChange1(int amount, List<Integer> total, int index) {
int[] denominations = {25, 10, 5, 1};
if (amount == 0) {
System.out.print(total + ", ");
}
if (amount >= denominations[index]) {
total.add(denominations[index]);
getChange1(amount-denominations[index], total, index);
total.remove(total.size()-1);
}
if (index + 1 < denominations.length) {
getChange1(amount, total, index+1);
}
}
Thanks!
It's not an else-if and the method doesn't return after printing out the list.
Once it prints out the line, it will continue to
if (index + 1 < denominations.length) {
getChange1(amount, total, index+1);
}
Which will call your function again with an incremented index.

Resources