The following was my question given by my teacher,
Generate a sequence of N = 1000 independent observations of random variable with distribution: (c) Exponential with parameter λ = 1 , by
inversion method.
Present graphically obtained sequences(except for those generated in point e) i.e. e.g. (a) i. plot in the coordinates (no. obs.,
value of the obs) ii. plot in the coordinates (obs no n, obs. no n +
i) for i = 1, 2, 3. iii. plot so called covariance function for some
values. i.e. and averages:
I have written the following code,
(*****************************************************************)
(*Task 01(c) and 02(a)*)
(*****************************************************************)
n = 1000;
taskC = Table[-Log[RandomReal[]], {n}];
ListPlot[taskC, AxesLabel->{"No. obs", "value of the obs"}]
i = 1;
ListPlot[Table[
{taskC[[k]], taskC[[k+i]]},
{k, 1, n-i,1}],
AxesLabel->{"obs.no.n", "obs.no.n+1"}]
i++;
ListPlot[Table[
{taskC[[k]], taskC[[k+i]]},
{k, 1, n-i,1}],
AxesLabel-> {"obs.no.n", "obs.no.n+2"}]
i++;
ListPlot[Table[
{taskC[[k]], taskC[[k+i]]},
{k,1,n-i,1}],
AxesLabel->{"obs.no.n", "obs.no.n+3"}]
avg = (1/n)*Sum[taskC[[i]], {i,n}];
ListPlot[Table[1/(n-tau) * Sum[(taskC[[i]]-avg)*(taskC[[i+tau]] - avg), n], {tau, 1,100}],
Joined->True,
AxesLabel->"Covariance Function"]
He has commented,
The plots of co-variance functions should start from 0-shift. Note
that for larger than 0 shifts you are estimating co-variance between
independent observations which is zero, while for 0 shift you are
estimating variance of observation which is large. Thus the contrast
between these two cases is a clear indication that the observations
are uncorrelated.
What did I do wrong?
How can I correct my code?
Zero-shift means calculating the covariance for tau = 0, which is simply the variance.
Labeled[ListPlot[Table[{tau,
1/(n - tau)*Sum[(taskC[[i]] - avg)*(taskC[[i + tau]] - avg), {i, n - tau}]},
{tau, 0, 5}], Filling -> Axis, FillingStyle -> Thick, PlotRange -> All,
Frame -> True, PlotRangePadding -> 0.2, AspectRatio -> 1],
{"Covariance Function K(n)", "n"}, {{Top, Left}, Bottom}]
Variance[taskC]
0.93484
Covariance[taskC, taskC]
0.93484
(* n = 1 *)
Covariance[Most[taskC], Rest[taskC]]
0.00926913
The following code gives me the first k eigenvalues of a certain big matrix. Because of the symmetries of the matrix, the eigenvalues are in pairs, one positive and the other negative, with the same absolute value. This is indeed the case if I run the code with the exact matrices, without using the sparse version. However when I make them sparse, the resulting eigenvalues appear to lose the sign information, as now the pairs can be both negative, or both positive, depending on the number I put on "nspins" (which controls the size of the matrix). The variable "sparse" controls whether I use sparse matrices or not.
This issue gives me considerable trouble. Can anybody tell me why the sparse version of the computation gives wrong signs, and how to fix it?
sparse = 1; (*Parameter that controls whether I will use sparse \
matrices, 0 means not sparse, 1 means sparse*)
(*Base matrices of my big matrix*)
ox = N[{{0, 1}, {1, 0}}];
oz = N[{{1, 0}, {0, -1}}];
id = N[{{1, 0}, {0, 1}}];
(*Transformation into sparse whether desired*)
If[sparse == 1,
ox = SparseArray[ox];
oz = SparseArray[oz];
id = SparseArray[id];
]
(*Dimension of the big matrix, must be even*)
nspins = 8;
(*Number of eigenvalues computed*)
neigenv = 4;
(*Algorithm to create big matrices*)
Do[
Do[
If[j == i, mata = ox; matc = oz;, mata = id; matc = id;];
If[j == 1,
o[1, i] = mata;
o[3, i] = matc;
,
o[1, i] = KroneckerProduct[o[1, i], mata];
o[3, i] = KroneckerProduct[o[3, i], matc];
];
, {j, 1, nspins}];
, {i, 1, nspins}];
(*Sum of big matrices*)
ham = Sum[o[1, i].o[1, i + 1], {i, 1, nspins - 1}] +
o[1, nspins].o[1, 1] + 0.5*Sum[o[3, i], {i, 1, nspins}];
(*Print the desired eigenvalues*)
Do[Print [Eigenvalues[ham, k][[k]]], {k, 1, neigenv}];
I am trying to solve the captioned problem numerically using Mathematica, to no avail. Imagine a rod of length L. The speed of sound in the rod is c. A pressure impulse of gaussian shape whose width is comparable to L/c is applied at one end. I would like to solve for the particle displacement function u(t,x) inside the rod. The Mathematica codes are given are follows,
c = 1.0 (*speed of wave*)
L = 1.0 (*length of medium*)
Subscript[P, 0] = 0.0 (*pressure of reservoir at one end*)
Subscript[t, 0] = 5.0*c/L; (*mean time of pressure impulse*)
\[Delta]t = 2.0*c/L; (*Std of pressure impulse*)
K = 1.0; (* proportionality constant, stress-strain *)
Subscript[P, max ] = 1.0; (*max. magnitude of pressure impulse*)
Subscript[P, 1][t_] :=
Subscript[P, max ]
PDF[NormalDistribution[Subscript[t, 0], \[Delta]t], t];
PDE = D[func[t, x], t, t] == c^2 D[func[t, x], x, x]
BC1 = -K func[t, 0] == Subscript[P, 1][t]
BC2 = -K func[t, L] == Subscript[P, 0]
IC1 = func[0,
x] == (-Subscript[P, 1][0]/K) (x/L) + (-Subscript[P, 0]/K) (1 - x/L)
IC2 = Derivative[1, 0][func][0, x] == 0.0
sol = NDSolve[{PDE, BC1, BC2, IC1, IC2},
func, {t, 0, 2 Subscript[t, 0]}, {x, 0, L}]
The problem is that the program keeps running for minutes without giving any output. Given the simplicity of the problem (i.e. that an analytical solution exists), I think there should be a quicker way to arrive at a numerical solution. Would someone please give me some suggestions?
Following George's advice, the equation was solved.
BC1 and BC2 given in the question should be modified as follows
BC1 = -kk Derivative[0, 1][func][t, 0] == p1[t]
BC2 = -kk Derivative[0, 1][func][t, ll] == p0
Also t0 and [Delta]t has been modified,
t0 = 2.0*c/ll (*mean time of pressure impulse*)
\[Delta]t = 0.5*c/ll (*Std of pressure impulse*)
The problem can be solved to within the accuracy requirement for the time interval 0 < t < 2 t0. I solved the problem for a longer time interval 0 < t < 4 t0 in order to look for something interesting.
Here is a plot of 3D plot of pressure (versus x and t)
Here is a plot of the pressure at one end of the bar where impulse is applied. The pressure is a gaussian, as expected.
Here is a plot of the pressure in the middle of the bar. Note that although the applied pressure is a gaussian, and the pressure at the other end is held at P0=0, the pressure becomes negative for some time tc.
I'm dealing with an image processing problem that I've simplified as follows. I have three 10x10 matrices, each with the values 1 or -1 in each cell. Each matrix has an irregular object located somewhere, and there is some noise in the matrix. I'd like to figure out how to find the optimal alignment of the matrices that would let me line up the objects so I can get their average.
With the 1/-1 coding, I know that the product of two matrices (using element-wise multiplication, not matrix multiplication) will yield 1 if there is a match between two multiplied cells and -1 if there is a mismatch, thus the sum of the products yields a measure of overlap. With this, I know I can try out all possible alignments of two matrices to find that which yields the optimal overlap, but I'm not sure how to do this with 3 matrices (or more - I really have 20+ in my actual data set).
To help clarify the problem, here is some code, written in R, that sets up the sort of matricies I'm dealing with:
#set up the 3 matricies
m1 = c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1)
m1 = matrix(m1,10)
m2 = c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1)
m2 = matrix(m2,10)
m3 = c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1)
m3 = matrix(m3,10)
#show the matricies
image(m1)
image(m2)
image(m3)
#notice there's a "+" shaped object in each
#create noise
set.seed(1)
n1 = sample(c(1,-1),100,replace=T,prob=c(.95,.05))
n1 = matrix(n1,10)
n2 = sample(c(1,-1),100,replace=T,prob=c(.95,.05))
n2 = matrix(n2,10)
n3 = sample(c(1,-1),100,replace=T,prob=c(.95,.05))
n3 = matrix(n3,10)
#add noise to the matricies
mn1 = m1*n1
mn2 = m2*n2
mn3 = m3*n3
#show the noisy matricies
image(mn1)
image(mn2)
image(mn3)
Here is a program in Mathematica that does what you want (I think).
I may explain it in more detail, if you need.
(*define temp tables*)
r = m = Table[{}, {100}];
(*define noise function*)
noise := Partition[RandomVariate[BinomialDistribution[1, .05], 100],
10];
For[i = 1, i <= 100, i++,
(*generate 100 10x10 matrices with the random cross and noise added*)
w = RandomInteger[6]; h = w = RandomInteger[6];
m[[i]] = (ArrayPad[CrossMatrix[4, 4], {{w, 6 - w}, {h, 6 - h}}] +
noise) /. 2 -> 1;
(*Select connected components in each matrix and keep only the biggest*)
id = Last#
Commonest[
Flatten#(mf =
MorphologicalComponents[m[[i]], CornerNeighbors -> False]), 2];
d = mf /. {id -> x, x_Integer -> 0} /. {x -> 1};
{minX, maxX, minY, maxY} =
{Min#Thread[g[#]] /. g -> First,
Max#Thread[g[#]] /. g -> First,
Min#Thread[g[#]] /. g -> Last,
Max#Thread[g[#]] /. g -> Last} &#Position[d, 1];
(*Trim the image of the biggest component *)
r[[i]] = d[[minX ;; maxX, minY ;; maxY]];
]
(*As the noise is low, the more repeated component is the image*)
MatrixPlot ## Commonest#r
Result: