Method chaining in ruby - ruby

I want to build an API client that has an interface similar to rails active record. I want the consumers to be able to chain methods and after the last method is chained, the client requests a url based on the methods called. So it's method chaining with some lazy evaluation. I looked into Active Record but this is very complicated (spawning proceses, etc).
Here is a toy example of the sort of thing I am talking about. You can chain as many 'bar' methods together as you like before calling 'get', like this:
puts Foo.bar.bar.get # => 'bar,bar'
puts Foo.bar.bar.bar.get # => 'bar,bar,bar'
I have successfully implemented this, but I would rather not need to call the 'get' method. So what I want is this:
puts Foo.bar.bar # => 'bar,bar'
But my current implementation does this:
puts Foo.bar.bar #=> [:bar, :bar]
I have thought of overriding array methods like each and to_s but I am sure there is a better solution.
How would I chain the methods and know which was the last one so I could return something like the string returned in the get method?
Here is my current implementation:
#!/usr/bin/env ruby
class Bar
def get(args)
# does a request to an API and returns things but this will do for now.
args.join(',')
end
end
class Foo < Array
def self.bar
#q = new
#q << :bar
#q
end
def bar
self << :bar
self
end
def get
Bar.new.get(self)
end
end
Also see: Ruby Challenge - Method chaining and Lazy Evaluation

How it works with activerecord is that the relation is a wrapper around the array, delegating any undefined method to this internal array (called target). So what you need is to start with a BasicObject instead of Object:
class Foo < BasicObject
then you need to create internal variable, to which you will delegate all the methods:
def method_missing(*args, &block)
reload! unless loaded?
#target.send(*args, &block)
end
def reload!
# your logic to populate target, e.g:
#target = #counter
#loaded = true
end
def loaded?
!!#loaded
end
To chain methods, your methods need to return new instance of your class, e.g:
def initialize(counter=0)
#counter = counter
end
def bar
_class.new(#counter + 1)
end
private
# BasicObject does not define class method. If you want to wrap your target
# completely (like ActiveRecord does before rails 4), you want to delegate it
# to #target as well. Still you need to access the instance class to create
# new instances. That's the way (if there are any suggestion how to improve it,
# please comment!)
def _class
(class << self; self end).superclass
end
Now you can check it in action:
p Foo.new.bar.bar.bar #=> 3
(f = Foo.new) && nil # '&& nil' added to prevent execution of inspect
# object in the console , as it will force #target
# to be loaded
f.loaded? #=> false
puts f #=> 0
f.loaded? #=> true

A (very simple, maybe simplistic) option would be to implement the to_s method - as it is used to "coerce" to string (for instance in a puts), you could have your specific "this is the end of the chain" code there.

Related

Delegation in Ruby

I have a class Klass, and its constructor accepts an argument. We should be able to call methods on this object that are not defined in Klass.
We can chain multiple methods, but in the end, we have to use Klass#result to get the result like:
Klass.new(5).pred.pred.result
and the output here should be 3. I tried using method_missing in Klass and using send on the object's class, but that would have worked without the result method that I have to use. Can someone explain how this can be done with delegation?
You could do something like this:
class Klass
def initialize(number)
#number = number
end
def result
#number
end
def method_missing(method_name, *arguments, &block)
if #number.respond_to?(method_name)
#number = #number.method(method_name).call(*arguments, &block)
return self
else
super
end
end
def respond_to_missing?(method_name, include_private = false)
# be sure to implement this...
end
end
puts Klass.new(5).pred.pred.result # => 3
But it's problematic. In this particular example, since #pred returns a new object (it doesn't modify the object it was called on), we have to reassign the instance variable to the result. It works for pred and other methods that return new Integers, but some methods on Integer don't return an Integer (e.g. Integer#even). In this case you'd get this sort of behavior:
puts Klass.new(4).even?.result # => true
Depending on your particular situation, that might be what you're after. Or, it might be that in your situation all methods the object being delegated to mutate that object, rather than return new instances of the object, in which case the reassignment isn't needed.
I don't think you can use Ruby's existing Delegator and SimpleDelegator constructs, because the only way you can chain the final #result call onto the end is if every delegated call returns the instance of Klass. Using those existing constructs would cause delegated calls to return their normal return values, and the chaining would then be on whatever objects those return values return. For example, using the above code, you'd see this behavior:
puts Klass.new(5).pred.pred.class # => "Klass"
Using SimpleDelegator, you'd see this behavior
require 'delegate'
class Klass2 < SimpleDelegator
# Klass2 methods...
end
puts Klass2.new(5).pred.pred.class # => "Fixnum"
Hope that helps.

Creating custom methods

What is best practice / syntax for trying to extract internal methods within a class?
class Foo
def initialize
end
def get_value
array = (API CALL TO GET ARRAY)
array.array_lookup("Bar")
end
def array_lookup(query)
self.each do |hash|
if hash[:key] == query
p hash[:value]
end
end
end
end
foo = Foo.new
foo.get_value #=> : undefined method `array_lookup' for #<Array:0x007fd3a49a2ca0 (NoMethodError)
The error message is telling me that my array object doesn't know how to respond to my method which makes sense in that I have an array that doesn't have this method, though I'm wondering how to fix this and similar uses. Do I overwrite the array class? Do I change my self.syntax?
array_lookup is Foo's method. So inside Foo class, you can call it by
array_lookup("Bar")
(without array.)
How about something like this? You turn your custom object into a subclass of Array so you get the array methods like #each. Actually, come to think of it, a better implementation might include mixing in the Enumerable module into your custom class (thinking composition over inheritance).
class Foo < Array
# More robust to change in application if you allow passing
# the query into this method. Just a suggestion.
def get_value(query)
request_data
lookup(query)
end
protected
def request_data
# API call to get data, assume this is array with contents
data = []
# Set contents of this object to contents of returned array
replace(data)
end
def lookup(query)
each do |hash|
if hash[:key] == query
puts hash[:value]
end
end
end
end
foo = Foo.new
foo.get_value("BAR")

how rails delegate method works?

After reading the answer by jvans below and looking at the source code a few more time I get it now :). And in case anyone is still wondering how exactly rails delegates works. All rails is doing is creating a new method with (module_eval) in the file/class that you ran the delegate method from.
So for example:
class A
delegate :hello, :to => :b
end
class B
def hello
p hello
end
end
At the point when delegate is called rails will create a hello method with (*args, &block) in class A (technically in the file that class A is written in) and in that method all rails do is uses the ":to" value(which should be an object or a Class that is already defined within the class A) and assign it to a local variable _, then just calls the method on that object or Class passing in the params.
So in order for delegate to work without raising an exception... with our previous example. An instance of A must already have a instance variable referencing to an instance of class B.
class A
attr_accessor :b
def b
#b ||= B.new
end
delegate :hello, :to => :b
end
class B
def hello
p hello
end
end
This is not a question on "how to use the delegate method in rails", which I already know. I'm wondering how exactly "delegate" delegates methods :D. In Rails 4 source code delegate is defined in the core Ruby Module class, which makes it available as a class method in all rails app.
Actually my first question would be how is Ruby's Module class included? I mean every Ruby class has ancestors of > Object > Kernel > BasicObject and any module in ruby has the same ancestors. So how exactly how does ruby add methods to all ruby class/modules when someone reopens the Module class?
My second question is.. I understand that the delegate method in rails uses module_eval do the actual delegation but I don't really understand how module_eval works.
def delegate(*methods)
options = methods.pop
unless options.is_a?(Hash) && to = options[:to]
raise ArgumentError, 'Delegation needs a target. Supply an options hash with a :to key as the last argument (e.g. delegate :hello, to: :greeter).'
end
prefix, allow_nil = options.values_at(:prefix, :allow_nil)
if prefix == true && to =~ /^[^a-z_]/
raise ArgumentError, 'Can only automatically set the delegation prefix when delegating to a method.'
end
method_prefix = \
if prefix
"#{prefix == true ? to : prefix}_"
else
''
end
file, line = caller.first.split(':', 2)
line = line.to_i
to = to.to_s
to = 'self.class' if to == 'class'
methods.each do |method|
# Attribute writer methods only accept one argument. Makes sure []=
# methods still accept two arguments.
definition = (method =~ /[^\]]=$/) ? 'arg' : '*args, &block'
# The following generated methods call the target exactly once, storing
# the returned value in a dummy variable.
#
# Reason is twofold: On one hand doing less calls is in general better.
# On the other hand it could be that the target has side-effects,
# whereas conceptually, from the user point of view, the delegator should
# be doing one call.
if allow_nil
module_eval(<<-EOS, file, line - 3)
def #{method_prefix}#{method}(#{definition}) # def customer_name(*args, &block)
_ = #{to} # _ = client
if !_.nil? || nil.respond_to?(:#{method}) # if !_.nil? || nil.respond_to?(:name)
_.#{method}(#{definition}) # _.name(*args, &block)
end # end
end # end
EOS
else
exception = %(raise DelegationError, "#{self}##{method_prefix}#{method} delegated to #{to}.#{method}, but #{to} is nil: \#{self.inspect}")
module_eval(<<-EOS, file, line - 2)
def #{method_prefix}#{method}(#{definition}) # def customer_name(*args, &block)
_ = #{to} # _ = client
_.#{method}(#{definition}) # _.name(*args, &block)
rescue NoMethodError => e # rescue NoMethodError => e
if _.nil? && e.name == :#{method} # if _.nil? && e.name == :name
#{exception} # # add helpful message to the exception
else # else
raise # raise
end # end
end # end
EOS
end
end
end
Ruby isn't reopening the module class here. In ruby the class Module and the class Class are almost identical.
Class.instance_methods - Module.instance_methods #=> [:allocate, :new, :superclass]
The main difference is that you can't 'new' a module.
Module's are ruby's version of multiple inheritance so when you do:
module A
end
module B
end
class C
include A
include B
end
behind the scenes ruby is actually creating something called an anonymous class. so the above is actually equivalent to:
class A
end
class B < A
end
class C < B
end
module_eval here is a little deceptive. Nothing from the code you're looking at is dealing with modules. class_eval and module_eval are the same thing and they just reopen the class that they're called on so if you want to add methods to a class C you can do:
C.class_eval do
def my_new_method
end
end
or
C.module_eval do
def my_new_method
end
end
both of which are equivalent to manually reopening the class and defining the method
class C
end
class C
def my_new_method
end
end
so when they're calling module_eval in the source above, they're just reopening the current class it's being called it and dynamically defining the methods that you're delegating
I think this will answer your question better:
Class.ancestors #=> [Module, Object, PP::ObjectMixin, Kernel, BasicObject]
since everything in ruby is a class, the method lookup chain will go through all of these objects until it finds what it's looking for. By reoping module you add behavior to everything. The ancestor chain here is a little deceptive, since BasicObject.class #=> Class and Module is in Class's lookup hierarchy, even BasicObject inherits behavior from repening module. The advantage of reopening Module here over Class is that you can now call this method from within a module as well as within a class! Very cool, learned something here myself.
After reading the answer by jvans below and looking at the source code a few more time I get it now :). And in case anyone is still wondering how exactly rails delegates works. All rails is doing is creating a new method with (module_eval) in the file/class that you ran the delegate method from.
So for example:
class A
delegate :hello, :to => :b
end
class B
def hello
p hello
end
end
At the point when delegate is called rails will create a hello method with (*args, &block) in class A (technically in the file that class A is written in) and in that method all rails do is uses the ":to" value(which should be an object or a Class that is already defined within the class A) and assign it to a local variable _, then just calls the method on that object or Class passing in the params.
So in order for delegate to work without raising an exception... with our previous example. An instance of A must already have a instance variable referencing to an instance of class B.
class A
attr_accessor :b
def b
#b ||= B.new
end
delegate :hello, :to => :b
end
class B
def hello
p hello
end
end

Ruby nil-like object

How can I create an Object in ruby that will be evaluated to false in logical expressions similar to nil?
My intention is to enable nested calls on other Objects where somewhere half way down the chain a value would normally be nil, but allow all the calls to continue - returning my nil-like object instead of nil itself. The object will return itself in response to any received messages that it does not know how to handle and I anticipate that I will need to implement some override methods such as nil?.
For example:
fizz.buzz.foo.bar
If the buzz property of fizz was not available I would return my nil-like object, which would accept calls all the way down to bar returning itself. Ultimately, the statement above should evaluate to false.
Edit:
Based on all the great answers below I have come up with the following:
class NilClass
attr_accessor :forgiving
def method_missing(name, *args, &block)
return self if #forgiving
super
end
def forgive
#forgiving = true
yield if block_given?
#forgiving = false
end
end
This allows for some dastardly tricks like so:
nil.forgiving {
hash = {}
value = hash[:key].i.dont.care.that.you.dont.exist
if value.nil?
# great, we found out without checking all its parents too
else
# got the value without checking its parents, yaldi
end
}
Obviously you could wrap this block up transparently inside of some function call/class/module/wherever.
This is a pretty long answer with a bunch of ideas and code samples of how to approach the problem.
try
Rails has a try method that let's you program like that. This is kind of how it's implemented:
class Object
def try(*args, &b)
__send__(*a, &b)
end
end
class NilClass # NilClass is the class of the nil singleton object
def try(*args)
nil
end
end
You can program with it like this:
fizz.try(:buzz).try(:foo).try(:bar)
You could conceivably modify this to work a little differently to support a more elegant API:
class Object
def try(*args)
if args.length > 0
method = args.shift # get the first method
__send__(method).try(*args) # Call `try` recursively on the result method
else
self # No more methods in chain return result
end
end
end
# And keep NilClass same as above
Then you could do:
fizz.try(:buzz, :foo, :bar)
andand
andand uses a more nefarious technique, hacking the fact that you can't directly instantiate NilClass subclasses:
class Object
def andand
if self
self
else # this branch is chosen if `self.nil? or self == false`
Mock.new(self) # might want to modify if you have useful methods on false
end
end
end
class Mock < BasicObject
def initialize(me)
super()
#me = me
end
def method_missing(*args) # if any method is called return the original object
#me
end
end
This allows you to program this way:
fizz.andand.buzz.andand.foo.andand.bar
Combine with some fancy rewriting
Again you could expand on this technique:
class Object
def method_missing(m, *args, &blk) # `m` is the name of the method
if m[0] == '_' and respond_to? m[1..-1] # if it starts with '_' and the object
Mock.new(self.send(m[1..-1])) # responds to the rest wrap it.
else # otherwise throw exception or use
super # object specific method_missing
end
end
end
class Mock < BasicObject
def initialize(me)
super()
#me = me
end
def method_missing(m, *args, &blk)
if m[-1] == '_' # If method ends with '_'
# If #me isn't nil call m without final '_' and return its result.
# If #me is nil then return `nil`.
#me.send(m[0...-1], *args, &blk) if #me
else
#me = #me.send(m, *args, &blk) if #me # Otherwise call method on `#me` and
self # store result then return mock.
end
end
end
To explain what's going on: when you call an underscored method you trigger mock mode, the result of _meth is wrapped automatically in a Mock object. Anytime you call a method on that mock it checks whether its not holding a nil and then forwards your method to that object (here stored in the #me variable). The mock then replaces the original object with the result of your function call. When you call meth_ it ends mock mode and returns the actual return value of meth.
This allows for an api like this (I used underscores, but you could use really anything):
fizz._buzz.foo.bum.yum.bar_
Brutal monkey-patching approach
This is really quite nasty, but it allows for an elegant API and doesn't necessarily screw up error reporting in your whole app:
class NilClass
attr_accessor :complain
def method_missing(*args)
if #complain
super
else
self
end
end
end
nil.complain = true
Use like this:
nil.complain = false
fizz.buzz.foo.bar
nil.complain = true
As far as I'm aware there's no really easy way to do this. Some work has been done in the Ruby community that implements the functionality you're talking about; you may want to take a look at:
The andand gem
Rails's try method
The andand gem is used like this:
require 'andand'
...
fizz.buzz.andand.foo.andand.bar
You can modify the NilClass class to use method_missing() to respond to any
not-yet-defined methods.
> class NilClass
> def method_missing(name)
> return self
> end
> end
=> nil
> if nil:
* puts "true"
> end
=> nil
> nil.foo.bar.baz
=> nil
There is a principle called the Law of Demeter [1] which suggests that what you're trying to do is not good practice, as your objects shouldn't necessarily know so much about the relationships of other objects.
However, we all do it :-)
In simple cases I tend to delegate the chaining of attributes to a method that checks for existence:
class Fizz
def buzz_foo_bar
self.buzz.foo.bar if buzz && buzz.foo && buzz.foo.bar
end
end
So I can now call fizz.buzz_foo_bar knowing I won't get an exception.
But I've also got a snippet of code (at work, and I can't grab it until next week) that handles method missing and looks for underscores and tests reflected associations to see if they respond to the remainder of the chain. This means I don't now have to write the delegate methods and more - just include the method_missing patch:
module ActiveRecord
class Base
def children_names
association_names=self.class.reflect_on_all_associations.find_all{|x| x.instance_variable_get("#macro")==:belongs_to}
association_names.map{|x| x.instance_variable_get("#name").to_s} | association_names.map{|x| x.instance_variable_get("#name").to_s.gsub(/^#{self.class.name.underscore}_/,'')}
end
def reflected_children_regex
Regexp.new("^(" << children_names.join('|') << ")_(.*)")
end
def method_missing(method_id, *args, &block)
begin
super
rescue NoMethodError, NameError
if match_data=method_id.to_s.match(reflected_children_regex)
association_name=self.methods.include?(match_data[1]) ? match_data[1] : "#{self.class.name.underscore}_#{match_data[1]}"
if association=send(association_name)
association.send(match_data[2],*args,&block)
end
else
raise
end
end
end
end
end
[1] http://en.wikipedia.org/wiki/Law_of_Demeter

How do I "fake" C# style attributes in Ruby?

EDIT: I slightly changed the spec, to better match what I imagined this to do.
Well, I don't really want to fake C# attributes, I want to one-up-them and support AOP as well.
Given the program:
class Object
def Object.profile
# magic code here
end
end
class Foo
# This is the fake attribute, it profiles a single method.
profile
def bar(b)
puts b
end
def barbar(b)
puts(b)
end
comment("this really should be fixed")
def snafu(b)
end
end
Foo.new.bar("test")
Foo.new.barbar("test")
puts Foo.get_comment(:snafu)
Desired output:
Foo.bar was called with param: b = "test"
test
Foo.bar call finished, duration was 1ms
test
This really should be fixed
Is there any way to achieve this?
I have a somewhat different approach:
class Object
def self.profile(method_name)
return_value = nil
time = Benchmark.measure do
return_value = yield
end
puts "#{method_name} finished in #{time.real}"
return_value
end
end
require "benchmark"
module Profiler
def method_added(name)
profile_method(name) if #method_profiled
super
end
def profile_method(method_name)
#method_profiled = nil
alias_method "unprofiled_#{method_name}", method_name
class_eval <<-ruby_eval
def #{method_name}(*args, &blk)
name = "\#{self.class}##{method_name}"
msg = "\#{name} was called with \#{args.inspect}"
msg << " and a block" if block_given?
puts msg
Object.profile(name) { unprofiled_#{method_name}(*args, &blk) }
end
ruby_eval
end
def profile
#method_profiled = true
end
end
module Comment
def method_added(name)
comment_method(name) if #method_commented
super
end
def comment_method(method_name)
comment = #method_commented
#method_commented = nil
alias_method "uncommented_#{method_name}", method_name
class_eval <<-ruby_eval
def #{method_name}(*args, &blk)
puts #{comment.inspect}
uncommented_#{method_name}(*args, &blk)
end
ruby_eval
end
def comment(text)
#method_commented = text
end
end
class Foo
extend Profiler
extend Comment
# This is the fake attribute, it profiles a single method.
profile
def bar(b)
puts b
end
def barbar(b)
puts(b)
end
comment("this really should be fixed")
def snafu(b)
end
end
A few points about this solution:
I provided the additional methods via modules which could be extended into new classes as needed. This avoids polluting the global namespace for all modules.
I avoided using alias_method, since module includes allow AOP-style extensions (in this case, for method_added) without the need for aliasing.
I chose to use class_eval rather than define_method to define the new method in order to be able to support methods that take blocks. This also necessitated the use of alias_method.
Because I chose to support blocks, I also added a bit of text to the output in case the method takes a block.
There are ways to get the actual parameter names, which would be closer to your original output, but they don't really fit in a response here. You can check out merb-action-args, where we wrote some code that required getting the actual parameter names. It works in JRuby, Ruby 1.8.x, Ruby 1.9.1 (with a gem), and Ruby 1.9 trunk (natively).
The basic technique here is to store a class instance variable when profile or comment is called, which is then applied when a method is added. As in the previous solution, the method_added hook is used to track when the new method is added, but instead of removing the hook each time, the hook checks for an instance variable. The instance variable is removed after the AOP is applied, so it only applies once. If this same technique was used multiple time, it could be further abstracted.
In general, I tried to stick as close to your "spec" as possible, which is why I included the Object.profile snippet instead of implementing it inline.
Great question. This is my quick attempt at an implementation (I did not try to optimise the code). I took the liberty of adding the profile method to the
Module class. In this way it will be available in every class and module definition. It would be even better
to extract it into a module and mix it into the class Module whenever you need it.
I also didn't know if the point was to make the profile method behave like Ruby's public/protected/private keywords,
but I implemented it like that anyway. All methods defined after calling profile are profiled, until noprofile is called.
class Module
def profile
require "benchmark"
#profiled_methods ||= []
class << self
# Save any original method_added callback.
alias_method :__unprofiling_method_added, :method_added
# Create new callback.
def method_added(method)
# Possible infinite loop if we do not check if we already replaced this method.
unless #profiled_methods.include?(method)
#profiled_methods << method
unbound_method = instance_method(method)
define_method(method) do |*args|
puts "#{self.class}##{method} was called with params #{args.join(", ")}"
bench = Benchmark.measure do
unbound_method.bind(self).call(*args)
end
puts "#{self.class}##{method} finished in %.5fs" % bench.real
end
# Call the original callback too.
__unprofiling_method_added(method)
end
end
end
end
def noprofile # What's the opposite of profile?
class << self
# Remove profiling callback and restore previous one.
alias_method :method_added, :__unprofiling_method_added
end
end
end
You can now use it as follows:
class Foo
def self.method_added(method) # This still works.
puts "Method '#{method}' has been added to '#{self}'."
end
profile
def foo(arg1, arg2, arg3 = nil)
puts "> body of foo"
sleep 1
end
def bar(arg)
puts "> body of bar"
end
noprofile
def baz(arg)
puts "> body of baz"
end
end
Call the methods as you would normally:
foo = Foo.new
foo.foo(1, 2, 3)
foo.bar(2)
foo.baz(3)
And get benchmarked output (and the result of the original method_added callback just to show that it still works):
Method 'foo' has been added to 'Foo'.
Method 'bar' has been added to 'Foo'.
Method 'baz' has been added to 'Foo'.
Foo#foo was called with params 1, 2, 3
> body of foo
Foo#foo finished in 1.00018s
Foo#bar was called with params 2
> body of bar
Foo#bar finished in 0.00016s
> body of baz
One thing to note is that it is impossible to dynamically get the name of the arguments with Ruby meta-programming.
You'd have to parse the original Ruby file, which is certainly possible but a little more complex. See the parse_tree and ruby_parser
gems for details.
A fun improvement would be to be able to define this kind of behaviour with a class method in the Module class. It would be cool to be able to do something like:
class Module
method_wrapper :profile do |*arguments|
# Do something before calling method.
yield *arguments # Call original method.
# Do something afterwards.
end
end
I'll leave this meta-meta-programming exercise for another time. :-)

Resources