setTargetReturn in fPortfolio package - portfolio

I have a three asset portfolio. I need to set the target return for my second asset
whenever i try i get this error
asset.ts <- as.timeSeries(asset.ret)
spec <- portfolioSpec()
setSolver(spec) <- "solveRshortExact"
constraints <- c("Short")
setTargetReturn(Spec) = mean(colMeans(asset.ts[,2]))
efficientPortfolio(asset.ts, spec, constraints)
Error: is.numeric(targetReturn) is not TRUE
Title:
MV Efficient Portfolio
Estimator: covEstimator
Solver: solveRquadprog
Optimize: minRisk
Constraints: Short
Portfolio Weights:
MSFT AAPL NORD
0 0 0
Covariance Risk Budgets:
MSFT AAPL NORD
Target Return and Risks:
mean mu Cov Sigma CVaR VaR
0 0 0 0 0 0
Description:
Sat Apr 19 15:03:24 2014 by user: Usuario
i have tried and i have searched the web but i have no idea how to set the target return
for a specific expected return of the data set. i could copy the mean of my second asset # but i think due to decimal it could affect the answer.

I ran into this error , when using 2 assets.
Appears to be a bug in the PortOpt methods.
When there's 2 assets, it runs : .mvSolveTwoAssets
Which looks for the TargetReturn in the portfolioSpecs.
But as you know, targetReturn isn't always needed.
But in your code , you have 2 separate variables for spec.
'spec' , and 'Spec'
i.e.: 'Spec' .. assuming this is a typo, then this line needs to be changed.
setTargetReturn(Spec) = mean(colMeans(asset.ts[,2]))

Related

Robust Standard Errors in lm() using stargazer()

I have read a lot about the pain of replicate the easy robust option from STATA to R to use robust standard errors. I replicated following approaches: StackExchange and Economic Theory Blog. They work but the problem I face is, if I want to print my results using the stargazer function (this prints the .tex code for Latex files).
Here is the illustration to my problem:
reg1 <-lm(rev~id + source + listed + country , data=data2_rev)
stargazer(reg1)
This prints the R output as .tex code (non-robust SE) If i want to use robust SE, i can do it with the sandwich package as follow:
vcov <- vcovHC(reg1, "HC1")
if I now use stargazer(vcov) only the output of the vcovHC function is printed and not the regression output itself.
With the package lmtest() it is possible to print at least the estimator, but not the observations, R2, adj. R2, Residual, Residual St.Error and the F-Statistics.
lmtest::coeftest(reg1, vcov. = sandwich::vcovHC(reg1, type = 'HC1'))
This gives the following output:
t test of coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.54923 6.85521 -0.3719 0.710611
id 0.39634 0.12376 3.2026 0.001722 **
source 1.48164 4.20183 0.3526 0.724960
country -4.00398 4.00256 -1.0004 0.319041
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
How can I add or get an output with the following parameters as well?
Residual standard error: 17.43 on 127 degrees of freedom
Multiple R-squared: 0.09676, Adjusted R-squared: 0.07543
F-statistic: 4.535 on 3 and 127 DF, p-value: 0.00469
Did anybody face the same problem and can help me out?
How can I use robust standard errors in the lm function and apply the stargazer function?
You already calculated robust standard errors, and there's an easy way to include it in the stargazeroutput:
library("sandwich")
library("plm")
library("stargazer")
data("Produc", package = "plm")
# Regression
model <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
data = Produc,
index = c("state","year"),
method="pooling")
# Adjust standard errors
cov1 <- vcovHC(model, type = "HC1")
robust_se <- sqrt(diag(cov1))
# Stargazer output (with and without RSE)
stargazer(model, model, type = "text",
se = list(NULL, robust_se))
Solution found here: https://www.jakeruss.com/cheatsheets/stargazer/#robust-standard-errors-replicating-statas-robust-option
Update I'm not so much into F-Tests. People are discussing those issues, e.g. https://stats.stackexchange.com/questions/93787/f-test-formula-under-robust-standard-error
When you follow http://www3.grips.ac.jp/~yamanota/Lecture_Note_9_Heteroskedasticity
"A heteroskedasticity-robust t statistic can be obtained by dividing an OSL estimator by its robust standard error (for zero null hypotheses). The usual F-statistic, however, is invalid. Instead, we need to use the heteroskedasticity-robust Wald statistic."
and use a Wald statistic here?
This is a fairly simple solution using coeftest:
reg1 <-lm(rev~id + source + listed + country , data=data2_rev)
cl_robust <- coeftest(reg1, vcov = vcovCL, type = "HC1", cluster = ~
country)
se_robust <- cl_robust[, 2]
stargazer(reg1, reg1, cl_robust, se = list(NULL, se_robust, NULL))
Note that I only included cl_robust in the output as a verification that the results are identical.

Pinescript duplicate alerts

I have created a very basic script in pinescript.
study(title='Renko Strat w/ Alerts', shorttitle='S_EURUSD_5_[MakisMooz]', overlay=true)
rc = close
buy_entry = rc[0] > rc[2]
sell_entry = rc[0] < rc[2]
alertcondition(buy_entry, title='BUY')
alertcondition(sell_entry, title='SELL')
plot(buy_entry/10)
The problem is that I get a lot of duplicate alerts. I want to edit this script so that I only get a 'Buy' alert when the previous alert was a 'Sell' alert and visa versa. It seems like such a simple problem, but I have a hard time finding good sources to learn pinescript. So, any help would be appreciated. :)
One way to solve duplicate alters within the candle is by using "Once Per Bar Close" alert. But for alternative alerts (Buy - Sell) you have to code it with different logic.
I Suggest to use Version 3 (version shown above the study line) than version 1 and 2 and you can accomplish the result by using this logic:
buy_entry = 0.0
sell_entry = 0.0
buy_entry := rc[0] > rc[2] and sell_entry[1] == 0? 2.0 : sell_entry[1] > 0 ? 0.0 : buy_entry[1]
sell_entry := rc[0] < rc[2] and buy_entry[1] == 0 ? 2.0 : buy_entry[1] > 0 ? 0.0 : sell_entry[1]
alertcondition(crossover(buy_entry ,1) , title='BUY' )
alertcondition(crossover(sell_entry ,1), title='SELL')
You'll have to do it this way
if("Your buy condition here")
strategy.entry("Buy Alert",true,1)
if("Your sell condition here")
strategy.entry("Sell Alert",false,1)
This is a very basic form of it but it works.
You were getting duplicate alerts because the conditions were fulfulling more often. But with strategy.entry(), this won't happen
When the sell is triggered, as per paper trading, the quantity sold will be double (one to cut the long position and one to create a short position)
PS :You will have to add code to create alerts and enter this not in study() but strategy()
The simplest solution to this problem is to use the built-in crossover and crossunder functions.
They consider the entire series of in-this-case close values, only returning true the moment they cross rather than every single time a close is lower than the close two candles ago.
//#version=5
indicator(title='Renko Strat w/ Alerts', shorttitle='S_EURUSD_5_[MakisMooz]', overlay=true)
c = close
bool buy_entry = false
bool sell_entry = false
if ta.crossover(c[1], c[3])
buy_entry := true
alert('BUY')
if ta.crossunder(c[1], c[3])
sell_entry := true
alert('SELL')
plotchar(buy_entry, title='BUY', char='B', location=location.belowbar, color=color.green, offset=-1)
plotchar(sell_entry, title='SELL', char='S', location=location.abovebar, color=color.red, offset=-1)
It's important to note why I have changed to the indices to 1 and 3 with an offset of -1 in the plotchar function. This will give the exact same signals as 0 and 2 with no offset.
The difference is that you will only see the character print on the chart when the candle actually closes rather than watch it flicker on and off the chart as the close price of the incomplete candle moves.

Error in setting max features parameter in Isolation Forest algorithm using sklearn

I'm trying to train a dataset with 357 features using Isolation Forest sklearn implementation. I can successfully train and get results when the max features variable is set to 1.0 (the default value).
However when max features is set to 2, it gives the following error:
ValueError: Number of features of the model must match the input.
Model n_features is 2 and input n_features is 357
It also gives the same error when the feature count is 1 (int) and not 1.0 (float).
How I understood was that when the feature count is 2 (int), two features should be considered in creating each tree. Is this wrong? How can I change the max features parameter?
The code is as follows:
from sklearn.ensemble.iforest import IsolationForest
def isolation_forest_imp(dataset):
estimators = 10
samples = 100
features = 2
contamination = 0.1
bootstrap = False
random_state = None
verbosity = 0
estimator = IsolationForest(n_estimators=estimators, max_samples=samples, contamination=contamination,
max_features=features,
bootstrap=boostrap, random_state=random_state, verbose=verbosity)
model = estimator.fit(dataset)
In the documentation it states:
max_features : int or float, optional (default=1.0)
The number of features to draw from X to train each base estimator.
- If int, then draw `max_features` features.
- If float, then draw `max_features * X.shape[1]` features.
So, 2 should mean take two features and 1.0 should mean take all of the features, 0.5 take half and so on, from what I understand.
I think this could be a bug, since, taking a look in IsolationForest's fit:
# Isolation Forest inherits from BaseBagging
# and when _fit is called, BaseBagging takes care of the features correctly
super(IsolationForest, self)._fit(X, y, max_samples,
max_depth=max_depth,
sample_weight=sample_weight)
# however, when after _fit the decision_function is called using X - the whole sample - not taking into account the max_features
self.threshold_ = -sp.stats.scoreatpercentile(
-self.decision_function(X), 100. * (1. - self.contamination))
then:
# when the decision function _validate_X_predict is called, with X unmodified,
# it calls the base estimator's (dt) _validate_X_predict with the whole X
X = self.estimators_[0]._validate_X_predict(X, check_input=True)
...
# from tree.py:
def _validate_X_predict(self, X, check_input):
"""Validate X whenever one tries to predict, apply, predict_proba"""
if self.tree_ is None:
raise NotFittedError("Estimator not fitted, "
"call `fit` before exploiting the model.")
if check_input:
X = check_array(X, dtype=DTYPE, accept_sparse="csr")
if issparse(X) and (X.indices.dtype != np.intc or
X.indptr.dtype != np.intc):
raise ValueError("No support for np.int64 index based "
"sparse matrices")
# so, this check fails because X is the original X, not with the max_features applied
n_features = X.shape[1]
if self.n_features_ != n_features:
raise ValueError("Number of features of the model must "
"match the input. Model n_features is %s and "
"input n_features is %s "
% (self.n_features_, n_features))
return X
So, I am not sure on how you can handle this. Maybe figure out the percentage that leads to just the two features you need - even though I am not sure it'll work as expected.
Note: I am using scikit-learn v.0.18
Edit: as #Vivek Kumar commented this is an issue and upgrading to 0.20 should do the trick.

volemont/insights:chart.EquityCurve.R: a bug in graphing peaks of cumulative return?

I came cross a function of graphing cumulative return of a strategy and the peaks of the return in a great example of combining shiny and quantstrat, thanks to Simon Otziger. The source code is here. The code works fine most of time, but for some data it won't graph the peaks properly.
The code is simplified but the key logic is not changed. I ran the code with three set of data (cumPNL1, cumPNL2, cumPNL3) copied from three example strategies, in which the first data will cause the code to fail to graph peaks properly.
I ran the following codes with cumPNL1, cumPNL2, cumPNL3 separately. with both cumPNL2 and cumPNL3 the code can produce cumulative return line and peak points successfully. however, with cumPNL1 the code can only produce line, but peaks are not at the right positions.
I noticed that both peakIndex based on cumPNL2 and cumPNL3 have their first value being TRUE, so when I change the code by adding a line peakIndex[1] <- TRUE, cumPNL1 will work fine with the modified code.
Though now it works with modified code, I have no idea why it is behaving like this. Could anyone have a look? Thanks
cumPNL1 <- c(-193,-345,-406,-472,-562,-543,-450,-460,-544,-659,-581,-342,-384,276,-858,-257.99)
cumPNL2 <- c(35.64,4.95,-2.97,-6.93,11.88,-19.8,-26.73,-39.6,-49.5,-50.49,-51.48,-48.51,-50.49,-55.44,143.55,770.22,745.47,691.02,847.44,1141.47,1007.82,1392.93,1855.26,1863.18,2536.38,2778.93,2811.6,2859.12,2417.58)
cumPNL3 <- c(35.64,4.95,-2.97,-6.93,11.88,-19.8,-26.73,-39.6,-49.5,-50.49,-51.48,-48.51,-50.49,-55.44,143.55,770.22,745.47,691.02,847.44,1141.47,1007.82,1392.93,1855.26,1863.18,2536.38,2778.93,2811.6,2859.12,2417.58)
peakIndex <- c(cumPNL3[1] > 0, diff(cummax(cumPNL3)) > 0)
# peakIndex[1] <- TRUE
dev.new()
plot(cumPNL3, type='n', xlab="index of trades", ylab="returns in cash", main="cumulative returns and peaks")
grid()
lines(cumPNL3)
points(cbind(1 : length(cumPNL3), cumPNL3)[peakIndex, ],
pch=19, col='green', cex=0.6)
legend(
x='bottomright', inset=0.1,
legend=c('Net Profit','Peaks'),
lty=c(1, NA), pch=c(NA, 19),
col=c('black','green')
)
cumPNL1 has a single peak and R reduces the dimension from a numerical matrix to a numerical vector of length 2. The points function plots the two numerical vector values on the y-axis using the x-axis index 1 and 2:
peakIndex1 <- c(cumPNL1[1] > 0, diff(cummax(cumPNL1)) > 0)
peakIndex3 <- c(cumPNL3[1] > 0, diff(cummax(cumPNL3)) > 0)
str(cbind(1 : length(cumPNL1), cumPNL1)[peakIndex1,])
str(cbind(1 : length(cumPNL3), cumPNL3)[peakIndex3,])
Output:
> str(cbind(1 : length(cumPNL1), cumPNL1)[peakIndex1,])
num [1:12, 1:2] 1 15 16 19 20 22 23 24 25 26 ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:2] "" "cumPNL1"
> str(cbind(1 : length(cumPNL3), cumPNL3)[peakIndex3,])
Named num [1:2] 14 276
- attr(*, "names")= chr [1:2] "" "cumPNL3"
Usually setting plot = FALSE preserves the object, e.g., str(cbind(1 : length(cumPNL3), cumPNL3)[peakIndex3, drop = FALSE]), which somehow does not work in this case. However, changing the points line to the following fixes the problem:
points(seq_along(cumPNL3)[peakIndex], cumPNL3[peakIndex], pch = 19,
col = 'green', cex = 0.6)
Thanks for reporting the issue. I will push the fix to GitHub tomorrow.

idata.frame: Why error "is.data.frame(df) is not TRUE"?

I'm working with a large data frame called exp (file here) in R. In the interests of performance, it was suggested that I check out the idata.frame() function from plyr. But I think I'm using it wrong.
My original call, slow but it works:
df.median<-ddply(exp,
.(groupname,starttime,fPhase,fCycle),
numcolwise(median),
na.rm=TRUE)
With idata.frame, Error: is.data.frame(df) is not TRUE
library(plyr)
df.median<-ddply(idata.frame(exp),
.(groupname,starttime,fPhase,fCycle),
numcolwise(median),
na.rm=TRUE)
So, I thought, perhaps it is my data. So I tried the baseball dataset. The idata.frame example works fine: dlply(idata.frame(baseball), "id", nrow) But if I try something similar to my desired call using baseball, it doesn't work:
bb.median<-ddply(idata.frame(baseball),
.(id,year,team),
numcolwise(median),
na.rm=TRUE)
>Error: is.data.frame(df) is not TRUE
Perhaps my error is in how I'm specifying the groupings? Anyone know how to make my example work?
ETA:
I also tried:
groupVars <- c("groupname","starttime","fPhase","fCycle")
voi<-c('inadist','smldist','lardist')
i<-idata.frame(exp)
ag.median <- aggregate(i[,voi], i[,groupVars], median)
Error in i[, voi] : object of type 'environment' is not subsettable
which uses a faster way of getting the medians, but gives a different error. I don't think I understand how to use idata.frame at all.
Given you are working with 'big' data and looking for perfomance, this seems a perfect fit for data.table.
Specifically the lapply(.SD,FUN) and .SDcols arguments with by
Setup the data.table
library(data.table)
DT <- as.data.table(exp)
iexp <- idata.frame(exp)
Which columns are numeric
numeric_columns <- names(which(unlist(lapply(DT, is.numeric))))
dt.median <- DT[, lapply(.SD, median), by = list(groupname, starttime, fPhase,
fCycle), .SDcols = numeric_columns]
some benchmarking
library(rbenchmark)
benchmark(data.table = DT[, lapply(.SD, median), by = list(groupname, starttime,
fPhase, fCycle), .SDcols = numeric_columns],
plyr = ddply(exp, .(groupname, starttime, fPhase, fCycle), numcolwise(median), na.rm = TRUE),
idataframe = ddply(exp, .(groupname, starttime, fPhase, fCycle), function(x) data.frame(inadist = median(x$inadist),
smldist = median(x$smldist), lardist = median(x$lardist), inadur = median(x$inadur),
smldur = median(x$smldur), lardur = median(x$lardur), emptyct = median(x$emptyct),
entct = median(x$entct), inact = median(x$inact), smlct = median(x$smlct),
larct = median(x$larct), na.rm = TRUE)),
aggregate = aggregate(exp[, numeric_columns],
exp[, c("groupname", "starttime", "fPhase", "fCycle")],
median),
replications = 5)
## test replications elapsed relative user.self
## 4 aggregate 5 5.42 1.789 5.30
## 1 data.table 5 3.03 1.000 3.03
## 3 idataframe 5 11.81 3.898 11.77
## 2 plyr 5 9.47 3.125 9.45
Strange behaviour, but even in the docs it says that idata.frame is experimental. You probably found a bug. Perhaps you could rewrite the check at the top of ddply that tests is.data.frame().
In any case, this cuts about 20% off the time (on my system):
system.time(df.median<-ddply(exp, .(groupname,starttime,fPhase,fCycle), function(x) data.frame(
inadist=median(x$inadist),
smldist=median(x$smldist),
lardist=median(x$lardist),
inadur=median(x$inadur),
smldur=median(x$smldur),
lardur=median(x$lardur),
emptyct=median(x$emptyct),
entct=median(x$entct),
inact=median(x$inact),
smlct=median(x$smlct),
larct=median(x$larct),
na.rm=TRUE))
)
Shane asked you in another post if you could cache the results of your script. I don't really have an idea of your workflow, but it may be best to setup a chron to run this and store the results, daily/hourly whatever.

Resources