How to reverse pairs in list without using `reverse`? - scheme

I have to write a function with the following input:
((something1 . something2) (something1 . something2) ... (something1 . something2))
and the corresponding output:
((something2 . something1) (something2 . something1) ... (something2 . something1))
I can't use vector, for, while, set, reverse, set-list, list-tail, append, length, or any procedure that ends with !.
I know this is wrong but maybe someone see where my mistake is:
(define (odwroc-alfabet list)
(let loop ((list list))
(if (pair? list)
(cons ((cdar list) (caar list)))
list)))

It's not enough to create the first swapped pair. You also need to recurse into the rest of the pairs and swap them too. Here's a modified version of your code:
(define (odwroc-alfabet list)
(let loop ((list list))
(if (pair? list)
(cons (cons (cdar list) (caar list)) (loop (cdr list)))
list)))
Of course, loop is a misnomer here since you're actually recursing rather than looping.

Just use map:
(define (odwroc-alfabet lst)
(map (lambda (e) (cons (cdr e) (car e))) lst))

Related

Inserting word beside another word starting from the end of list

I have code which is inserting new word on the right side of choosen word
(define insertR
(lambda (new old lst)
(cond
((null? lst) (lst))
(else (cond
((eq? (car lst) old)
(cons old
(cons new (cdr lst))))
(else (cons (car lst)
(insertR new old
(cdr lst)))))))))
i need to make it insert that word beside first appearance of word starting from the end of list. Tried to work with reverse but could not get that to work.
There are two strategies you can take to add it next to the last occurence.
The first is to use a helper and start off with the reverse list. This is very simple and my preferred solution.
(define (insert-by-last-match insert find lst)
(let loop ((lst (reverse lst)) (acc '()))
(if (null? lst)
acc
(let ((a (car lst)))
(if (equal? a find)
(append (reverse (cdr lst))
(list* find insert acc))
(loop (cdr lst) (cons a acc)))))))
The other one is kind of obscure. Whenever you find the element you replace last-match with a callback that replaces the computation since it was made and until it gets called with the replacement and the rest of the list, which of course is the correct result. The work done until the end of the list is simply discarded since it is not used, but we do it since we are not sure if we are going to find a later one and then all the work uptil that is of course included in the result.
(define (insert-by-last-match insert find lst)
(define (helper lst last-match)
(if (null? lst)
(last-match)
(let* ((a (car lst)) (d (cdr lst)))
(cons a
(if (equal? a find)
(let/cc k
(helper d (lambda () (k (cons insert d)))))
(helper d last-match))))))
(helper lst (lambda () lst)))
call/cc (or its variant let/cc) is often described as time travel or advanced goto. It is not very intuitive. Here is a CPS version:
(define (insert-by-last-match insert find lst)
(define (helper lst last-match k)
(if (null? lst)
(last-match)
(let* ((a (car lst)) (d (cdr lst)) (k2 (lambda (v) (k (cons a v)))))
(if (equal? a find)
(helper d (lambda () (k2 (cons insert d))) k2)
(helper d last-match k2)))))
(helper lst (lambda () lst) (lambda (v) v)))
Basically this is the same as the previous only that here I have written the CPS code and with the let/cc version the implementation does it for me and I get to use k exactly where I need it. In this version you see there is no magic or time travel but the execution that should happen later is simply replaced at a point.
Write in a similar way insertL and apply it to the reversed list.
And reverse the result. Then you will have an insertion beside first appearance of word starting from the end of list
(define insertL
(lambda (new old lst)
(cond ((null? lst) '())
((eq? (car lst) old) (cons new lst))
(else (cons (car lst) (insertL new old (cdr lst)))))))
(define last-insertR
(lambda (new old lst)
(let* ((rlst (reverse lst))
(result (insertL new old rlst)))
(reverse result))))
test:
(last-insertR 'aa 'a '(b c d a h i a g))
;; '(b c d a h i a aa g)
By the way, the beauty of cond is that you can put the conditions always at the beginning - listed one under the other.
So one can write your insertR nicer as:
(define insertR
(lambda (new old lst)
(cond ((null? lst) '())
((eq? (car lst) old) (cons old (cons new (cdr lst))))
(else (cons (car lst) (insertR new old (cdr lst)))))))

Return alternate elements of 3 given lists. Scheme

This procedure is supposed to return a list with alternative values from 3 given lists. So for example (alt ('a b c)'(1 2 3)'(i j k)) should return '(a 1 i b 2 j c 3 k).
This is my logic so far. I would take the first element of each list and recursively call the procedure again with cdr as the new arguments.
(define (alternate lst1 lst2 lst3)
(cons (car lst1)
(cons (car lst2)
(cons (car lst3)
(alternate (cdr lst1)(cdr lst2)(cdr lst3))))))
The error occurs in
(cons (car lst1)
"mcar: contract violation
expected: mpair?
given()"
(cons a d) returns a newly allocated pair whose first element is a and second element is d. But since there are 3 not 2 given lists, is there another way to approach creating lists?
Would this be another approach?
(define (alternate lst1 lst2 lst3)
(list (car lst1)(car lst2)(car lst3))
(alternate (cdr lst1)(cdr lst2)(cdr lst3)))
You need to add empty list check to avoid the error. So your code should look like this:
(define (alternate lst1 lst2 lst3)
(if (or (null? lst1) (null? lst2) (null? lst3))
'()
(cons (car lst1)
(cons (car lst2)
(cons (car lst3)
(alternate (cdr lst1)(cdr lst2)(cdr lst3)))))))
If you can use SRFI-1 (or more precisely append-map), then you can also write like this:
(define (alt l1 l2 l3) (append-map list l1 l2 l3))
You can just use the following standard Scheme:
(define (alternate . lists)
(apply append (apply map list lists)))
Not very optimized, but does the job :)
Eval: http://eval.ironscheme.net/?id=175

Scheme getting last element in list

Im trying to write a simple scheme function that returns the last element of a list. My function looks like it should work, but I managed to fail on something:
(define (last_element l)(
(cond (null? (cdr l)) (car l))
(last_element (cdr l))
))
(last_element '(1 2 3)) should return 3
DrRacket keeps on giving me the errors:
mcdr: contract violation
expected: mpair?
given: ()
Since (null? '()) is true, I don't get why this doesn't work.
This is a function I think I will need for a homework assignment (writing the function last-element is not the assignment), and the instructions say that I cannot use the built-in function reverse, so I can't just do (car (reverse l))
How do I fix this function?
Your syntax is totally wrong. You have an extra set of parentheses around the body of the function, not enough around the cond clauses, and your recursive case isn't even within the cond, so it gets done whether the test succeeds or fails. The following procedure should work:
(define (last_element l)
(cond ((null? (cdr l)) (car l))
(else (last_element (cdr l)))))
Just to add: in professional-level Racket, the last function is a part of the racket/list library.
you can retrieve the last element of a list by calling
(define (lastElem list) (car (reverse list)))
or, recursively using if built-in
(define (last list)
(if (zero? (length (cdr list)))
(car list)
(last (cdr list))))
You can also do it like this.First find the lenght of a list by cdring it down.Then use list-ref x which gives the x element of the list.
For example list-ref yourlistsname 0 gives the first element (basically car of the list.)And (list-ref
yourlistsname (- length 1)) gives the last element of the list.

Scheme Deep reverse function

I am doing a scheme program which takes in a list and then reverse it. So far it works for simple list, which does not contain any sublist, but when I test it for a list contains sublist, it fails. Please help me where is wrong with it.
Here is the code:
(define deep-reverse
(lambda (L)
(cond
((empty? L) '())
(else (append (deep-reverse (rest L)) (list (first L)))))))
(define (deeprev L)
(if (null? L) '()
(if (list? (car L))
(if (chek (car L)) (append (deeprev (cdr L)) (list (reverse (car L))))
(append (deeprev (cdr L)) (list (deeprev (car L)))))
(append (deeprev (cdr L)) (list (car L))))))
First of all, you are using undefined Scheme functions. I am going to work off the following assumptions:
empty? is null?
rest is cdr
first is car
Your code works by taking the first element in a list and adding it to another list. However, that first element of a list can be a list itself. You need to test to see if the element that you're working on is atomic or a list. If it's a list, then you call deep-reverse recursively.
If you would like to see code appended to this, leave a comment.

how to define last in scheme?

how can I write a function to take the last element of the list?
find the last of a list:
(define (last l)
(cond ((null? (cdr l)) (car l))
(else (last (cdr l)))))
use map to map last to a list:
(map last '((a b) (c d) (e f)))
==> (b d f)
so a new function:
(define (last-list l)
(map last l)
)
(last-list '((a b) (c d) (e f)))
==> (b d f)
May not be the most efficient, but certainly one of the simplest:
(define (last lst)
(car (reverse lst)))
Examples:
(last '(1 2 3 4)) => 4
(last '((a b) (b c) (d e))) => (d e)
The code you've written - to take the last element of a list - is correctly returning the last element of the list. You have a list of lists. There is an outer list
(x y z)
where
x = (a b)
y = (c d)
z = (e f)
So you're getting the last element of the list, z, which is (e f)
Did you want your last function to do something different? If you want it to return the last element of the last nested list, you need to change your base case. Right now you return the car. Instead, you want to check if the car is a list and then call your nested-last function on that.
Make sense?
Your last function is good, but you have to think about what you want to do with it now.
You have a list of lists, and you want to take the last of all those.
So recurse down your list applying it each time:
(define (answer lst)
(cond ((null? (cdr l)) null)
(else (cons (last (car l)) (answer (cdr lst))))
Yet another possibility:
(define (last thelist)
(if
(null? (cdr thelist)) (car thelist)
(last (cdr thelist))))
(define (all-last lists) (map last lists))
Edit: just saw that you don't know map, and want a solution without it:
(define (all-last lists)
(if
(null? lists) `()
(cons (last (car lists)) (all-last (cdr lists)))))
As far as getting an empty list goes, I'd guess you're trying to use this map-like front-end with your original definition of last, whereas it's intended to work with the definition of last I gave above. Try the following definitions:
(define (last thelist) (if
(null? (cdr thelist)) (car thelist)
(last (cdr thelist))))
(define (all-last lists) (if
(null? lists) `()
(cons (last (car lists)) (all-last (cdr lists)))))
and running a quick test:
(all-last `((a b) (c d) (e f)))
The result should be:
(b d f)
(define last
(lambda (ls)
(list-ref ls (- (length ls) 1))))
I like short, sweet, fast, tail-recursive procedures.
Named let is my friend.
This solves the original problem and returns #f if the list has no last element.
(define (last L) (let f ((last #f) (L L)) (if (empty? L) last (f (car L) (cdr L)))))
The best way to get what you want:
(define (last lst)
(cond [(empty? lst) empty]
[(empty? (rest lst)) (first lst)]
[else (last (rest lst))]))

Resources