I'm starting with cmake, I found this module/s with this macro/s, the docs says that this macro are checking 1 flag, but I also found out that a normal set of flags works just as fine as when you use 1 flag, for example
include(CheckCXXCompilerFlag)
CHECK_CXX_COMPILER_FLAG("-std=c++11 -O3 -v" HAS_FLAG)
if (HAS_FLAG)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -O3 -v")
endif()
This is good for me because it makes really easy to identify where I'm setting the flags for a given platform or compiler, a 1 by 1 check would easily be too tedious and verbose to be handy.
Is this a good way to write a CMakeLists.txt ? There are possible drawbacks when checking multiple flags at once ?
Besides that if your check will fail, you wouldn't able to identify which particular flag caused it - no, there are no drawbacks.
Expanding on this; If you want to make sure a certain flag doesn't produce a warning, you can specify the first argument like so (for clang/gcc):
check_cxx_compiler_flag("-Werror <flag>" <variable>)
Related
my CMAKE_C_FLAGS_DEBUGS and CMAKE_CXX_FLAGS_DEBUG flags in the end result in -g -Og -Og, when removing one -Og I have to build again, while i thought that only the last -Og would be taken. This makes me think that there is a difference in behaviour between the two.
Can someone explain this behaviour. It is caused by the cmake-gui which has its own settings, which i did not expect.
CMake doesn't look at the specific flags you're passing, since that would require understanding command-line options for all the compilers it supports. Because you changed the flags, even in a manner that's logically equivalent from a gcc perspective, CMake considers everything built with the old flags out of date.
Do note this is different from
Get the compiler options from a compiled executable? which I did go through in detail.
Although -frecord-gcc-switches is great, it only captures the command line arguments.
For example, I am not interested in capturing -O2 which is usually passed in command line. I am more curious about recording all the flags like -fauto-inc-dec which are enabled by -O2.
(In contrast to the link above, do note that I have access to the source, the compiler and the build infrastructure. I just want to capture the flags during compilation. Not picky about any specific gcc version)
You can try -fverbose-asm. That dumps the optimisation options used in a comment at the top of the assembly file.
Is it possible when compiling in GCC to include the -Wall flag but then exclude a single flag from that subset, such as -Wattributes? Alternately one could include all the warning flags but -Wattributes but I figured there must be a much cleaner way.
Yes it's possible, just prefix the warning name with no-, like in
-Wno-attributes
This is generic for just about all boolean flags, not only warnings.
I'm working on setting up autotools for a large code base that was once just a bash script compile and later just hand written Makefiles.
We have a set of files that require that compiler optimizations be turned off. These files are already in their own subdirectory, so they will have their own Makefile.am.
What's the proper way to drop any existing compiler optimizations and force a -O0 flag on the compiler for these specific files?
I went with Brett Hale's comment to use subpackages. I was able to insert
: ${CFLAGS="-O0"}
before AC_PROG_CC, which sets the appropriate optimization. The other solutions do not work, since the -g -O2 was getting added very last. You can never get another -O variable after it.
You don't have to remove existing optimizations: the last value of -O on the compiler invocation will be used, so it's good enough to just add -O0 at the end.
This is not directly supported by automake, but there's a trick you can use defined in the documentation.
Otherwise if you know you'll only ever invoke your makefile with GNU make you can play other tricks that are GNU make specific; you may have to disable automake warnings about non-portable content.
Is there a way to change the specs file so that it will pass -march=native if nothing is specified in command line?
Related things in the default specs file is:
*cc1:
%(cc1_cpu)
*cc1_cpu:
%{march=native:%>march=native %:local_cpu_detect(arch) %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}
I am not sure how specs works. Simply specifying -march=native before or after %(cc1_cpu) doesn't work. However, this line does take effect because GCC will report error if I put -something_wierd instead of -march=native.
Another thing I noticed is if I put %{march=i386:-something_wierd} before %(cc1_cpu), gcc reports error so looks like -march=i386 is always passed in if nothing is specified, so is there a way to distinguish between nothing specified and -march=i386 in specs file?
BTW, what does %> do? Seems like it is not specified in the documentation.
I am using MinGW's gcc-4.6.2.
Referring to your last question: The gcc 4.6.1 sources (gcc/gcc.c) contain the following comment on %>:
%>S Similar to "%<S", but keep it in the GCC command line.
For the sake of completeness following the comment for %< form the same file:
%<S remove all occurrences of -S from the command line.
Note - this command is position dependent. % commands in the
spec string before this one will see -S, % commands in the
spec string after this one will not.
To answer the first question in short: yes, but ....
... the only generic solution I found has the significant drawback that the -march option will be ignored, so every build is done as if -march=native had been specified. Anyhow there is a workaround to that.
1 The solution (without workaround)
Create a specs-file called let's say specs.nativealways containing:
*cc1_cpu:
%<march=* -march=native %>march=native %:local_cpu_detect(arch) %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)} %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}
When using the specs-file (for example by invoking gcc with the option -specs=specs.nativealways) the build will be done as if -march=native was specified (with the mentioned drawback that any occurrence of option -march=<arch> would have simply been ignored).
2 The workaround
To still by able to override the newly configured default behavior one can use a modified version of the specs-file described above, introducing a new option called -myarch using the same syntax as -march (except for -myarch=native, which won't work, which does not metter as native now is the default).
The modfied specs-file looks like this:
*cc1_cpu:
%<march=* %{myarch=*:%<myarch* -march=%* ; :-march=native %>march=native %:local_cpu_detect(arch) %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}
PS: This has been tested with with gcc 4.6.2 on Linux, but should work on MinGW.
While not a direct answer to your question, you can reach a very similar effect by defining CFLAGS and CXXFLAGS in your shell's initialization file. 99% of the Makefiles are sufficiently standard to pick up the environment values and pass the flags to gcc.
*cc1_cpu:
+ %{!march*:-march=native}