Solr Direct Search Vs Oracle DB Text Field Direct Search - oracle

I am working on a large scale oracle database. There is a requirement to validate whether the email address is available in the database when user enters it. If a direct database call is made it would be exact match
e.g Select email from Users where emailaddress = "sampleemail#domain.com" it is not a LIKE.
It has been suggested that rather than doing a direct database exact search it would be better to do a solr search for this. Even so it will be an exact match.
I would like understand, Can there be a significant advantage in using solr in this scenario as it is a exact match. If so how

No, don't do that. Build an index in the database (a unique btree) and query that. Whoever suggested solr for this is highly misinformed about the trade offs. This is literally and exactly why there are indexes inside the database at all.

Related

Cassandra table structure for query to get all usernames

In my cassandra database I have a table with users and I want a function to search for users by their unique usernames. For that I need to query all usernames from the user table so that I can filter them serverside, because for input of "nark" I should also find username "Mark", "Narkis" and so on, so I can't just use the username as a partition key and search for the exact value.
If I give them all in the same partition, it results in a hot partition. If I distribute them over multiple partitions, I have to search in all of them.
How can query that efficiently for millions of users? Is there a way to search like that without querying all usernames?
Thank you for your help!
Cassandra natively is not a good fit for such a use case. Even extensive use of secondary indexes will be of minimal help here.
Nevertheless if you already have all your data on C* to achieve such a functionality you essentially need a indexing framework on top of it, most widely used is Apache SOLR (built on Lucene).I have seen SOLR work like magic for fuzzy searching on C* though nothing beats having something like Elasticsearch for the use case.

Should I be using database ID's as Elastic ID's

I am new to elastic and starting to sync my database tables into elastic indexes. I have started by using the table ID(UUID) as the elastic id, but I am starting to wonder if this is a mistake in terms of performance or flexibility in the long term? Any advice would be appreciated.
I think this approach should actually be a best practice. When you update data in your ES index from the (changed) DB, you can address the document directly.
It has worked great for us to use the _bulk update API, which requires an explicit id per item.
On every change on the DB side, we enqueue change notifications, the changed object gets JSON-serialized and sent to ES, asynchronously, and in larger batches. That is making a huge performance difference. Search performance, on the other side, does not depend on the length of the _id AFAIK, not even when you look up by _id. So your DB UUID should be just fine. Especially since _ids can be alphanumeric, they are not limited to just numbers.
Having a 1:1 relationship via _id between the ES result and your system of record (I assume that's what your DB is for) is advantageous also for transparency purposes. In any case, you want to store the database ID as some field, ideally indexed, at least, to help you understand where that document came from.
So, rather than creating your own ID field, you may as well use the built-in _id field right away, with your DB-supplied data.

ElasticSearch vs Relational Database

I'm creating a microservice to handle the contacts that are created in the software. I'll need to create contacts and also search if a contact exists based on some information (name, last name, email, phone number). The idea is the following:
A customer calls, if it doesn't exist we create the contact asking all his personal information. The second time he calls, we will search coincidences by name, last name, email, to detect that the contact already exists in our DB.
What I thought is to use a MongoDB as primary storage and use ElasticSearch to perform the query, but I don't know if there is really a big difference between this and querying in a common relational database.
EDIT: Imagine a call center that is getting calls all the time from mostly different people, and we want to search fast (by name, email, last name) if that person it's in our DB, wouldn't ElasticSearch be good for this?
A relational database can store data and also index it.
A search engine can index data but also store it.
Relational databases are better in read-what-was-just-written performance. Search engines are better at really quick search with additional tricks like all kinds of normalization: lowercase, รค->a or ae, prefix matches, ngram matches (if indexed respectively). Whether its 1 million or 10 million entries in the store is not the big deal nowadays, but what is your query load? Well, there are only this many service center workers, so your query load is likely far less than 1qps. No problem for a relational DB at all. The search engine would start to make sense if you want some normalization, as described above, or you start indexing free text comments, descriptions of customers.
If you don't have a problem with performance, then keep it simple and use 1 single datastore (maybe with some caching in your application).
Elasticsearch is not meant to be a primary datastore so my advice is to use a simple relational database like Postgres and use simple SQL queries / a ORM mapper. If the dataset is not really large it should be fast enough.
When you have performance issues on searches you can use a combination of relation db and Elasticsearch. You can use Elasticsearch feeders to update ES with your data in you relational db.
Indexed RDBMS works well for search
If your data is structured i.e. columns are clearly defined, searching 1 million records will also not be a problem in RDBMS.
When to use Elastic
Text Search: Searching words across multiple properties (e.g. description, name etc.)
JSON Store and search: If data being stored is in json format and later needs to be searched
Auto Suggestions: Elastic is better at providing autocomplete suggestions
Elastic as an application data provider
Elastic should not be seen as data store, even if you storing data in it. It is about how you perceive elastic. Elastic should be used to store and setup data for the application. It is the application which decides how and when to use elastic (search and suggestions). Elastic is not a nosql storage alternative if compared to RDBMS, you should use a nosql database instead.
This perception puts elastic in line with redis and kafka. These tools are key components of an application design and they are used to serve as events stores, search engines and cache etc. to the applications.
Database with Elastic
Your design should use both. For storing the contacts use the database, index the contacts for querying. Also make the data available in elastic for searching, autocomplete and related matches.
As always, it depends on your specific use case. You briefly described it, but how are you acually going to use the data?
If it's just something simple like checking if a customer exists and then creating a new customer, then use the RDMS option. Moreover, if you don't expect a large dataset, so that scaling isn't an issue (hence the designation that Elasticsearch is for BigData), but you have transactions and data integrity is important, then a RDMS will be the right fit. Some examples could be for tax, leasing, or financial reporting systems.
However, if you have a large dataset, you need a wide range of query capabilities, such as a fuzzy search or searches where the user
can select multiple filters on the data or you want to do some predictive analysis on the data, then Elasticsearch is the clear choice.
For example, I worked on an web based app with a large customer base: 11 million, with 200+ hits per second at peak time for a find a doctor application. The customer could check some checkboxes to determine, specialty, spoken languages, ratings, hospitals, etc. all sorted by the distance from the users location with a 2 second or less response time. It would be very difficult for a RDMS to match that.

How to search for multiple strings in very large database

I want to search for multiple strings in a very large database. These strings are part of different attributes of database table. I have tried string search using LIKE in sql query. But it is taking a lot of time to get results. I have used Oracle database.
Should I use indexing of database? I found that Lucene can be used for it.
I also got some suggestions of using big data concepts. Which approach should I use?
The easiest way is:
1.) adding an index to the columns you like to search trough
2.) using oracle text as #lalitKumarB wrote
The most powerful way is:
3.) use an separate search engine (solr, elaticsearch).
But, probably you have to change you application in order to explicit use the search index for searching trough the data,...
I had the same situation some years before. Trying to search text in an big database. After a wile I found out, that database based search will never reach the performance of an dedicate search engine. And: you will have much more search features working out of the box, if you use solr (for example), like spelling correction, "More like this", ...
One option is to hold the data on orcale, searching in solr and return the ID of the document in order to only load the one row form oracle, the is referenced by the ID.
2nd option is to keep oracle as base datapool for your search engine and search in solr (or elasticsearch) in order to return the whole document/row from solr, not only the ID. So you don't need to load the data from the database any more.
The best option depends on your needs.
You have the choice between elasticsearch, solr or lucene

Keyword search over a collection of OWL ontologies

I have a collection of OWL ontologies. Each ontology is stored in a dataset of a triple store database (e.g OWLIM, Stardog, AllegroGraph ). Now I need to develop an application which supposes searching these ontologies based on keywords, i.e., given a keyword, the application should return ontologies that contains this keyword.
I have checked OWLIM-SE and Stardag, they only provide full text search over one dataset but not the whole database. I also have considered Solr(Lucene). But in this case the ontologies will be indexed twice (once by Lucene, another one by triple store database.)
Is there any other solution for this problem?
Thanks in advance.
Stardog's full text indexing works over an entire database and can be done transparently with SPARQL which will allow you to easily access other properties of the concepts matching your search criteria in a single query. This will get you precisely what you're describing.
For some information on administering the search indexes, and Stardog in general, check out these docs

Resources