I need to implement a few processes which are working parallel. I'm very new to vhdl and can't figure out how to make a architecture without an entity? do I really need a entity for a architecture?
architecture architecture_test of ????? is
shared variable test: std_ulogic_vector(7 downto 0);
process1 : process is
begin
-- do something
end process process1;
process2 : process is
begin
--do something
end process process2;
process3 : process is
begin
--do something
end process process3;
end architecture architecture_test
Or is there another way to do that?
An entity is a primary unit representing the interface to a design specification implemented in an architecture, a secondary unit. An entity and it's selected architecture together implement a block, which can be instantiated by component, direct entity instantiation, or configuration.
Is it possible to simulate something without an entity? Not with a VHDL simulator. It's possible to have an empty entity:
entity foo is
end entity;
architecture fum of foo is
begin
end architecture;
(This should actually analyze, there's no requirement an architecture have any concurrent statements either.)
A testbench is generally an entity providing no interfaces (or sometimes just a generic interface), and an architecture that contains concurrent statements (and processes are concurrent statements).
So, you need an entity, it doesn't need to provide an interface. An entity declaration also provides a declarative region where you can supply declarations necessary for declarations in the architecture body's declarative region.
It's called a testbench because it has no practically value in hardware. It's only useful for testing one or more design specifications that do have interfaces (and can be synthesized) or for executing a VHDL design specification (your multiple processes in an architecture body) on a simulator.
The length of simulation time a collection of processes can run is bounded by two things. First there is no standard for how many delta simulation cycles can run without advancing simulation time.
There are simulators that can execute an unlimited number of delta cycles. Early VHDL simulators had consecutive delta cycle limits measured in hundreds. It's common to use a delta cycle limit of 5,000 (Modelsim's default).
The other limit is the duration of the Time variable, which can be expanded optionally by some simulators by setting the resolution limit and constraining the minimum size of Time physical unit appears in a design description, in effect scaling Time to run longer at a coarser granularity.
If Time advances in a simulation it will eventually run up against Time'HIGH and stop and implementing a resolution limit is optional for an implementation.
In effect trying to write the equivalent of a daemon in VHDL is guaranteed to be non-portable. VHDL isn't a general purpose parallel programming language, wiki articles stating to the contrary, aside.
It's also possible to write a VHDL design specification that memory leaks. There is no requirement for garbage collection.
I'm very new to vhdl and can't figure out how to make a architecture without an entity? do I really need a entity for a architecture?
Yes you do.
The entity describes how to interface to the architecture. The architecture describes what goes on inside the entity.
To give a C-code metaphor... given this code:
int some_func(int x, int y)
{
return x*x+y*y;
}
You are asking:
"Can I have this
{
return x*x+y*y;
}
without this:
int some_func(int x, int y)
"
As David notes, you can have an entity without any interface to hold your architecture, but you still have to have one. (In the same way as you still have to have at least void main(void) in C*.)
*(Yes I know main is supposed to return an int, but the example falls over then!)
Related
I have a VHDL BCD counter whose output is an integer value (digit).
But when I simulate the code in Xilinx ISE it shows the code's waveform in binary value. The code works but the output should be integer but it's not. I have tested this code in Modelsim and the output is correct and it's in integer value. This problem is in code synthesize too and the value is binary.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity bcdcnt is
Port ( clk : in STD_LOGIC;
digit : out INTEGER RANGE 0 TO 9);
end bcdcnt;
architecture Behavioral of bcdcnt is
begin
count: PROCESS(clk)
VARIABLE temp : INTEGER RANGE 0 TO 10;
BEGIN
IF (clk'EVENT AND clk = '1') THEN
temp := temp + 1;
IF (temp = 10) THEN temp := 0;
END IF;
END IF;
digit <= temp;
END PROCESS count;
end Behavioral;
That's what synthesis does.
That's what synthesis MUST do : it translates your high level design to the resources in your FPGA or ASIC, which are binary. So, what's the problem here?
If you need to simulate the post-synth result, the usual approach is to create a wrapper entity that takes the correct port types, and translates between those and the post-synthesis netlist component.
Then, simulation should work with either the original entity, or this wrapper entity, both of which have integer ports.
Better still, you can re-use the same entity, and add the wrapper as a second architecture, thus guaranteeing that it uses the same interface (ports).
(You can even instantiate both the original and post-synth in its wrapper in the testbench, in parallel with a comparator on their outputs, to see they both do the same thing. But note there will be gate-level delays between them; usually you check outputs only on clock edges so these do not matter.)
Another approach is to restrict port types on the top level of the design to binary types like std_logic_vector. This plays nicer with badly designed tools, like ISE where the automatically generated testbench will have binary port types, (I generally edit them back to the correct ones; it's almost easier to write TBs from scratch).
But it restricts you to using an obscure and complex design style instead of higher level abstractions like Integers.
It's bad - really bad - that this approach is taught and encouraged so widely. But it is, and sometimes you'll just have to live with it. (Even in this approach, there's no reason to avoid decent abstractions internal to the FPGA, as long as the synthesis tool understands them).
A third approach - roughly, "trust, but verify" - is to trust that synthesis tools are competently written - which is usually true - and forget about post-synthesis simulation.
Just verify the design thoroughly at the behavioural level in simulation, then synthesise it, and test in live FPGA.
99% of the time (unless you're writing really weird VHDL), synth and P&R have done the right thing, and any differences you see are due to the aforementioned I/O timings (gate delays at the I/O pins). Then model these in the testbench and/or wrapper until you see the same behaviour in both (fix anything that needs fixing, and re-synthesise).
In this approach you only need to bother with the (MUCH slower) post-synth and post-PAR simulations if you need to track down a suspected synthesis tool bug.
This does happen : I've seen two in a quarter century.
Most of the time I just use the third approach.
I use Xilinx ISE as a IDE.
If I add a 100 ps delay at every assignment in a always(Verilog)/process(VHDL) with sensitive list only have clock and reset.
Like this.
always#(posedge clk)
if(rst)
a <= #100 'd0;
else
a <= #100 b;
end
I think the delay function is only effect the simulation process.Because every book and user guide tell us delay is not synthesizable.
But I still wondering if the delay function can really effect the place or route's result?Like static timing or clock report?
Like can make a circuit max frequency higher or slower?
No the #delay in your code is not going to affect the timing of the design when it is loaded on to the FPGA.
It also does not affect the place and route results or the static timing analysis. Both of these steps use timing information that is provided by the manufacturer in the form of device models.
You are correct that there's nothing intrinsic about delay statements that makes them unsynthesizable, however it's wildly impractical to attempt to do so. The reason for this is that once on the FPGA you are dealing with a physical circuit whose performance varies with PVT (process, voltage, temperature) and can do so by a lot! The only hedge against this would be an analog circuit that attempts to sense all of the above and adjust itself accordingly. Such a beast will still be limited in what it can do, and would be physically large and power hungry depending on the rage of delay and the variance in all of the above you want to support.
So with than in mind and considering that there is very little (read: no) demand for this outside of special purpose IO FPGA vendors don't provide any such components making the construct unsythesizable.
Delay statements (#100) are usually ignored during synthesis in Verilog. So in synthesis it is the same as:
always#(posedge clk)
if(rst)
a <= 0;
else
a <= b;
end
Xlinx Synthesis and Simuation Design Guide states:
Delays in Synthesis Code
Do not use Wait for XX ns (VHDL) or the #XX (Verilog) statements in
your code. (...) This statement does not synthesize to a component.
In designs that include this construct, the functionality of the
simulated design does not always match the functionality of the
synthesized design.
(...)
Wait for XX ns Statement Verilog Coding Example
#XX;
Do not use the After XX ns statement in your VHDL code or the Delay
assignment in your Verilog code
(...)
Delay Assignment Verilog Coding Example
assign #XX Q=0;
XX specifies the number of nanoseconds that must pass before a
condition is executed. This statement is usually ignored by the
synthesis tool. In this case, the functionality of the simulated
design does not match the functionality of the synthesized design.
"Usually" there is no impact on synthesis and P&R results.
Xilinx: This statement is usually ignored by the synthesis tool.
When does it have impact then?
Although the delay statement is ignored by the synthesis tool, the HDL code is a little bit different. That may change the seed of randomization in any stage (parsing, elaboration, synthesis etc.), so there is a possibility for different results. These results may be better or worse.
If a delay statement exists in the code, the following warning is expected from Xilinx ISE:
WARNING:Xst:916 - design.v line x: Delay is ignored for synthesis.
a real junior question with hopefully a junior answer, regarding one of the main assignments of VHDL (concurrent selective assignment) can anyone explain what a VHDL compiler would synthesise the following description into?
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.numeric_std.ALL;
ENTITY Q2 IS
PORT (a,b,c,d : IN std_logic;
EW_NS : OUT std_logic
);
END ENTITY Q2;
ARCHITECTURE hybrid OF Q2 IS
SIGNAL INPUT : std_logic_vector(3 DOWNTO 0);
SIGNAL EW_NS : std_logic;
BEGIN
INPUT <= (a & b & c & d); -- concatination
WITH (INPUT) SELECT
EW_NS <= '1' WHEN "0001"|"0010"|"0011"|"0110"|"1011",
'0' WHEN OTHERS;
END ARCHITECTURE hybrid;
Why do I ask? well I have previously gone about things the wrong way i.e. describing things on VHDL before making a block diagram of the components needed. I would envisage this been synthed as a group of and gate logic ?
Any help would be really helpful.
Thanks D
You need to look at the user guide for your target FPGA, and understand what is contained within one 'logic element' ('slice' in Xilinx terminology). In general an FPGA does not implement combinatorial logic by connecting up discrete gates like AND, OR, etc. Instead, a logic element will contain one or more 'look-up tables', with typically four (but now 6 in some newer devices) inputs. The inputs to this look up table (LUT) are the inputs to your logic function, and the output is one of the outputs of the function. The LUT is then programmed as a ROM, allowing your input signals to function as an address. There is one ROM entry for every possible combination of inputs, with the result being the intended logic function.
A function with several outputs would simply use several of these LUTs in parallel, with the same inputs, one LUT for each of the function's outputs. A function requiring more inputs than the LUT has (say, 7 inputs, where a LUT has only 4), simply combines two LUTs in parallel, using a multiplexer to choose between the output of the two LUTs. This final multiplexer uses one of the input signals as it's control, and again every possible combination of inputs is accounted for.
This may sound inefficient for creating something simple like an AND gate, but the benefit is that this simple building block (a LUT) can implement absolutely any combinatorial function. It's also worth noting that an FPGA tool chain is extremely good at optimising logic functions in order to simplify them, and to better map them into the FPGA. The LUT provides a highly generic element for these tools to target.
A logic element will also contain some dedicated resources for functions that aren't well suited to the LUT approach. These might include dedicated carry chains for adders, multiplexers for combining the output of several LUTS, registers (most designs are synchronous). LUTs can also sometimes be configured as small shift registers or RAM elements. External to the logic elements, there will be more specific blocks like large multipliers, larger memories, PLLs, etc, none of which can be as efficiently implemented using LUT resource. Again, this will all be explained in the user guide for your target FPGA.
Back in the day, your code would have been implemented as a single 74150 TTL circuit, which is a 16-to-1 mux. you have a 4-bit select (INPUT), and this selects one of 16 inputs to the chip, which is routed to a single output ('EW_NS`). The 74150 is obsolete and I can't find any datasheets, but it's easy to find diagrams of what an 8-to-1 mux looks like (here, for example). The 16->1 is identical, but everything is wider. My old TI databook shows basically exactly the diagram at this link doubled up.
But - wait. Your problem is easier, because you're not routing real inputs to the output - you're just setting fixed data values. On the '150, you do this by wiring 5 of the 16 inputs to 1, and the remaining 11 to 0. This makes the logic much easier.
The 74150 has basiscally exactly the same functionality as a 4-input look-up table (where the fixed look-up data is the same as fixed levels at the '150 inputs), so it's trivial to implement your entire circuit in a single LUT in an FPGA, as per scary_jeff's answer, rather than using a NAND-level implementation. In a proper chip, though, it would be implemented as a sum-of-products, or something similar (exactly what's in the linked diagram). In this case, draw a K-map and find a minimum solution. My 2 minutes on the back of an envelope comes up with three 3-input AND gates, driving a 3-input OR gate. I'll leave it as an exercise to you to check this :)
I was recently told that the solution to all (most) problems with unintended latches during VHDL synthesis is to put whatever the problematic signal is in a record.
This seems like it's a little bit too good to be true, but I'm not that experienced with VHDL so there could be something else that I'm not considering.
Should I put all my signals in records?
No, you should not put all your signals in records. This will quickly become very confusing and you will not gain anything by using the record.
One way that a record may help you avoid latches, is if you register an entire record in a clocked process, you are really registering all of the components of the record. This takes one line of code, instead of possibly tens of lines. In the case where you have many elements which all need to be treated the same, a record can save you "silly mistakes", and possibly save you from creating a latch.
As stated by others, a record doesn't have any specific synthesis interpretation. It is simply a group of signals that you are grouping together for coding-convenience.
I don't see how this would help - a record (or even just parts of a record) can become a latch just as easily as a signal. A latch is generated if a signal keeps its state through some combinatorial process (i.e., is not assigned a value on ALL paths through the process). The same holds for constituents of a record.
Records can be useful to group related signals for readability, but synthesis-wise a record is pretty much equivalent to a bunch of individual signals.
My personal suggestion to avoid latches: avoid combinatorial processes. Make all processes clocked, and do combinatorial logic at the architecture level.
A record is just another way of grouping other types, similar to using an array
for grouping of a std_logic to std_logic_vector, so there is nothing
magical about records that make them better for avoiding latches in a design.
If you get unintended latches in your design, what I guess you think of as
"latch problems", it is because you coding style specifies latches, and you
should change the coding style, as #zennehoy also suggests.
One approach can be to define some code templates for different constructions
that you use, and then stick to these known and working templates.
The template for a flip-flop (FF) with asynchronous reset can be:
process (clk_i, rst_i) is
begin
-- Clock
if rising_edge(clk_i) then
... Control structures with Qs assign by function for Ds
... Synchronous reset is just another branch
end if;
-- Reset (asynchronous) if required
if rst_i = '1' then
... Qs assign with constant reset value for so or all Qs
end if;
end process;
Use concurrent signal assigns when possible, and more complex expressions can
be done through use of concurrent function call, where a function is used
outside a process like:
z_o <= fun(a_i, b_i);
If a process is used to create combinatorial logic, then a common pitfall and
cause for latches in VHDL is to forget a signal in the sensitivity list.
However, VHDL-2008 has a solution for this, since you can use (all) as
sensitivity list, whereby all signal used in the process are implicitly
included in the sensitivity list. So if you use VHDL-2008, then your template
for combinatorial processes can be:
process (all) is
begin
z_o <= a_i and b_i;
end process;
These template should be all you need for typical synthesizable design, and
these will keep your design latch free.
I would like to know if there is a way to access an entities default generic values or an entities architectures constants during synthesis.
This is out of curiosity (and I want to implement something like that).
Possible Usecases
1) generating Testbench for the default entity:
entity testme is
generic(outputs:integer:=4);
ports(output:out bit_vector(0 to outputs);
end entity;
in the testbench i need to generate a signal whcih can be connected to output, without knowing the generics value there is no way of doing so.
2) I would like to know the actual size I use when instantiating Blockram. On FPGAs there is Blockram, fixed chunks of ram one can use, if one needs more ram than is available in one block multiple blocks are combined. Varying with the technology the size of the available blockrams can change. Thus I write an entity with two generic parameters memory and technology that implements my memory with the least Blockrams possible. This might lead to the Memory being larger than requested. If I now have another entity that needs the size of the memory to fully utilitize it (i.e. circular buffer controller), I have to supply it the actual size of the memory allocated.
You have to push these things downwards from the top (ie from the testbench). It is not possible to inspect a lower-level block (although I guess you could bring a signal out and back up to the top!)
you can use unconstraint types, e.g.:
entity example
port(
i: std_logic_vector;
o: std_logic_vector
);
in the testbench you add defined vectors e.g.:
....
signal i,o: std_logic_vector(10 downto 0);
begin
uut: example
port map(
i => i,
o => o
);