Can elasticsearch handle structured data whats its limits? - elasticsearch

I have got 5 million objects.Each object has 100 properties. 50 properties text, 40 properties numeric values and ten properties datetime. I am sending random ad hoc queries with sorts and all kinds of queries. What ES limits? How big can the cluster go ?

I don't think you'll get a precise answer as to how big ES can go - as always it's a question of what kind of documents you are indexing, the complexity of the queries, the frequency with which you update and query, what acceptable response times are, etc.
That said, from my own experience of several live clusters with hundreds of millions of documents each I'd say you are well below any known limits to ES. I'd also check their list of cases studies, should give you more insight into how others are using ES.
http://www.elasticsearch.org/case-studies/

I would look at the limitations of Apache Lucene rather than Elasticsearch seeing as ES is essentially Lucene in a big wrapper. You can start by having a look here. Hope this helps.

Related

Strategies to compare performance of two Elasticsearch queries?

Since actual query runtime varies, it's not always useful to just check the runtime of two queries to determine which is generally faster. What are some ways to generally test whether one query is more efficient than another?
As an example of what I'm after, in MongoDB I can run explain on a query to get the number of documents iterated vs. returned. If the documents iterated is several orders of magnitude higher than what it's actually returning, I know I have an inefficient query. I know that since Elasticsearch indexes data much differently than other dbs, this may not translate well, but I'm wondering if there's some rough equivalent.
I'm looking at the Profile API which looks like a good starting place. Are fields like next_doc and next_doc_count what I'm after? Are there any others I should look for? Thanks!!

Performance features in Elasticsearch 5 that are not available in Solr 6

I am picking one of the 2 search engines above for a project, and so far both of them have shown to be similar in functionalities.
At least for the requirements that I have:
Proximity Search
Boolean queries
query over all fields
Boolean queries
Retrieval of original indexed document
Real time search requirements, as soon as I index a document, it should be available
Besides that I should have around 1 single type of document, in about 40 million documents - roughly 2 TB of data
that's basically what I need, my questions would be:
Does one search engine perform better than the other considering my dataset? Such as offering better indexing rates or Search Rates?
Am I loosing anything by going with Solr(considering my requirements)?
Solr is my choice at the moment.
some thoughts:
nobody can tell you about which one would perform best for you unless you benchmark in your realistic conditions
for %99 of users, any of the two would work perfectly
if you want to go with one of them (for any reason: you like it, your devs want to try it, you like the logo, whatever), then, don't sweat it, both are very capable.

elasticsearch - tips on how to organize my data

I'm trying elasticsearch by getting some data from facebook and twitter to.
The question is: how can I organize this data in index?
/objects/posts
/objects/twits
or
/posts/post
/twits/twit
I'm trying queries such as, get posts by author_id = X
You need to think about the long term when deciding how to structure your data in Elasticsearch. How much data are you planning on capturing? Are search requests going to look into both Facebook and Twitter data? Amount of requests, types of queries and so on.
Personally I would start of with the first approach, localhost:9200/social/twitter,facebook/ as this will reduce the need for another index when it isn't necessarily required. You can search across both of the types easily which has less overhead than searching across two indexes. There is quite an interesting article here about how to grow with intelligence.
Elasticsearch has many configurations, essentially its finding a balance which fits your data.
First one is the good approach. Because creating two indices will create two lucence instances which will effect the response time.

MongoDB text index search slow for common words in large table

I am hosting a mongodb database for a service that supports full text searching on a collection with 6.8 million records.
Its text index includes ten fields with varying weights.
Most searches take less than a second. Some searches take two to three seconds. However, some searches take 15 - 60 seconds! The 15-60 second search cases are unacceptable for my application. I need to find a way to speed those up.
Searching takes 15-60 seconds when words that are very common in the index are used in the search query.
I seems that the text search feature does not support lazy parameters. My first thought was to cache a list of the 50 most common words in my text index and then ask mongodb to evaluate those last (lazy) and on top of the filtered results returned by the less common parameters. Hopefully people are still with me. For example, say I have a query "products chocolate", where products is common and chocolate is uncommon. I would like to be able to ask mongodb to evaluate "chocolate" first, and then filter those results with the "products" term. Does anyone know of a way to achieve this?
I can achieve the above scenario by omitting the most common words (i.e. "products") from the db query and then reapplying the common term filter on the application side after it has received records found by db. It is preferable for all query logic to happen on the database, but am open to application side processing for a speed payout.
There are still some holes in this design. If a user only searches common terms, I have no choice but to hit the database with all the terms. From preliminary reading, I gather that it is not recommended (or not supported) to have multiple text indexes (with different names) on the same collection. My plan is to create two identical tables, each with my 6.8M records, with different indexes - one for common words and one for uncommon words. This feels kludgy and clunky, but am willing to do this for a speed increase.
Does anyone have any insight and/or advice on how to speed up this system. I'd like as much processing to happen on the database as possible to keep it fast. I'm sure my little 6.8M record table is not the largest that mongodb has seen. Thanks!
Well I worked around these performance issues by allowing MongoDB full text search to search in OR based format. I'm prioritizing my results by fine tuning the weights on my indexed fields and just ordering by rank. I do get more results than desired, but that's not a huge problem because my weighted results that appear at the top will most likely be consumed before my user gets to less relevant results at the bottom.
If anyone is struggling with MongoDB text search performance using AND searching only, just switch back to OR and control your results using weights. It performs leaps better.
hth
This is the exact same issue as $all versus $in. $all only uses the index for the first keyword in the array. I believe your seeing the same issue here, reason why the OR a.k.a. IN works for you.

Why is Solr so much faster than Postgres?

I recently switched from Postgres to Solr and saw a ~50x speed up in our queries. The queries we run involve multiple ranges, and our data is vehicle listings. For example: "Find all vehicles with mileage < 50,000, $5,000 < price < $10,000, make=Mazda..."
I created indices on all the relevant columns in Postgres, so it should be a pretty fair comparison. Looking at the query plan in Postgres though it was still just using a single index and then scanning (I assume because it couldn't make use of all the different indices).
As I understand it, Postgres and Solr use vaguely similar data structures (B-trees), and they both cache data in-memory. So I'm wondering where such a large performance difference comes from.
What differences in architecture would explain this?
First, Solr doesn't use B-trees. A Lucene (the underlying library used by Solr) index is made of a read-only segments. For each segment, Lucene maintains a term dictionary, which consists of the list of terms that appear in the segment, lexicographically sorted. Looking up a term in this term dictionary is made using a binary search, so the cost of a single-term lookup is O(log(t)) where t is the number of terms. On the contrary, using the index of a standard RDBMS costs O(log(d)) where d is the number of documents. When many documents share the same value for some field, this can be a big win.
Moreover, Lucene committer Uwe Schindler added support for very performant numeric range queries a few years ago. For every value of a numeric field, Lucene stores several values with different precisions. This allows Lucene to run range queries very efficiently. Since your use-case seems to leverage numeric range queries a lot, this may explain why Solr is so much faster. (For more information, read the javadocs which are very interesting and give links to relevant research papers.)
But Solr can only do this because it doesn't have all the constraints that a RDBMS has. For example, Solr is very bad at updating a single document at a time (it prefers batch updates).
You didn't really say much about what you did to tune your PostgreSQL instance or your queries. It's not unusual to see a 50x speed up on a PostgreSQL query through tuning and/or restating your query in a format which optimizes better.
Just this week there was a report at work which someone had written using Java and multiple queries in a way which, based on how far it had gotten in four hours, was going to take roughly a month to complete. (It needed to hit five different tables, each with hundreds of millions of rows.) I rewrote it using several CTEs and a window function so that it ran in less than ten minutes and generated the desired results straight out of the query. That's a 4400x speed up.
Perhaps the best answer to your question has nothing to do with the technical details of how searches can be performed in each product, but more to do with ease of use for your particular use case. Clearly you were able to find the fast way to search with Solr with less trouble than PostgreSQL, and it may not come down to anything more than that.
I am including a short example of how text searches for multiple criteria might be done in PostgreSQL, and how a few little tweaks can make a large performance difference. To keep it quick and simple I'm just running War and Peace in text form into a test database, with each "document" being a single text line. Similar techniques can be used for arbitrary fields using the hstore type or JSON columns, if the data must be loosely defined. Where there are separate columns with their own indexes, the benefits to using indexes tend to be much bigger.
-- Create the table.
-- In reality, I would probably make tsv NOT NULL,
-- but I'm keeping the example simple...
CREATE TABLE war_and_peace
(
lineno serial PRIMARY KEY,
linetext text NOT NULL,
tsv tsvector
);
-- Load from downloaded data into database.
COPY war_and_peace (linetext)
FROM '/home/kgrittn/Downloads/war-and-peace.txt';
-- "Digest" data to lexemes.
UPDATE war_and_peace
SET tsv = to_tsvector('english', linetext);
-- Index the lexemes using GiST.
-- To use GIN just replace "gist" below with "gin".
CREATE INDEX war_and_peace_tsv
ON war_and_peace
USING gist (tsv);
-- Make sure the database has statistics.
VACUUM ANALYZE war_and_peace;
Once set up for indexing, I show a few searches with row counts and timings with both types of indexes:
-- Find lines with "gentlemen".
EXPLAIN ANALYZE
SELECT * FROM war_and_peace
WHERE tsv ## to_tsquery('english', 'gentlemen');
84 rows, gist: 2.006 ms, gin: 0.194 ms
-- Find lines with "ladies".
EXPLAIN ANALYZE
SELECT * FROM war_and_peace
WHERE tsv ## to_tsquery('english', 'ladies');
184 rows, gist: 3.549 ms, gin: 0.328 ms
-- Find lines with "ladies" and "gentlemen".
EXPLAIN ANALYZE
SELECT * FROM war_and_peace
WHERE tsv ## to_tsquery('english', 'ladies & gentlemen');
1 row, gist: 0.971 ms, gin: 0.104 ms
Now, since the GIN index was about 10 times faster than the GiST index you might wonder why anyone would use GiST for indexing text data. The answer is that GiST is generally faster to maintain. So if your text data is highly volatile the GiST index might win on overall load, while the GIN index would win if you are only interested in search time or for a read-mostly workload.
Without the index the above queries take anywhere from 17.943 ms to 23.397 ms since they must scan the entire table and check for a match on each row.
The GIN indexed search for rows with both "ladies" and "gentlemen" is over 172 times faster than a table scan in exactly the same database. Obviously the benefits of indexing would be more dramatic with bigger documents than were used for this test.
The setup is, of course, a one-time thing. With a trigger to maintain the tsv column, any changes made would instantly be searchable without redoing any of the setup.
With a slow PostgreSQL query, if you show the table structure (including indexes), the problem query, and the output from running EXPLAIN ANALYZE of your query, someone can almost always spot the problem and suggest how to get it to run faster.
UPDATE (Dec 9 '16)
I didn't mention what I used to get the prior timings, but based on the date it probably would have been the 9.2 major release. I just happened across this old thread and tried it again on the same hardware using version 9.6.1, to see whether any of the intervening performance tuning helps this example. The queries for only one argument only increased in performance by about 2%, but searching for lines with both "ladies" and "gentlemen" about doubled in speed to 0.053 ms (i.e., 53 microseconds) when using the GIN (inverted) index.
Solr is designed primarily for searching data, not for storage. This enables it to discard much of the functionality required from an RDMS. So it (or rather lucene) concentrates on purely indexing data.
As you've no doubt discovered, Solr enables the ability to both search and retrieve data from it's index. It's the latter (optional) capability that leads to the natural question... "Can I use Solr as a database?"
The answer is a qualified yes, and I refer you to the following:
https://stackoverflow.com/questions/5814050/solr-or-database
Using Solr search index as a database - is this "wrong"?
For the guardian solr is the new database
My personal opinion is that Solr is best thought of as a searchable cache between my application and the data mastered in my database. That way I get the best of both worlds.
This biggest difference is that a Lucene/Solr index is like a single-table database without any support for relational queries (JOINs). Remember that an index is usually only there to support search and not to be the primary source of the data. So your database may be in "third normal form" but the index will be completely be de-normalized and contain mostly just the data needed to be searched.
Another possible reason is generally databases suffer from internal fragmentation, they need to perform too much semi-random I/O tasks on huge requests.
What that means is, for example, considering the index architecture of a databases, the query leads to the indexes which in turn lead to the data. If the data to recover is widely spread, the result will take long and that seems to be what happens in databases.
Please read this and this.
Solr (Lucene) creates an inverted index which is where retrieving data gets quite faster. I read that PostgreSQL also has similar facility but not sure if you had used that.
The performance differences that you observed can also be accounted to "what is being searched for ?", "what are the user queries ?"

Resources